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ABSTRACT 

Little is known about the nature or extent of everyday 
variability in voice quality within a speaker or how 
this differs across speakers. Using principal 
component analysis, we identified measures that 
account for perceptually relevant acoustic variance 
within speakers. Based on face-identity studies and 
cognitive models of speaker recognition, we 
hypothesized that a few components would be shared 
across speakers, but that much of what characterizes 
individual talkers would be idiosyncratic. Fifty 
female and fifty male speakers of English provided 
multiple sentence productions recorded over three 
days. Acoustic parameters were measured for vowels 
and approximants. For both females and males, the 
most variance (20%/22%) was accounted for by 
variability in source spectral shape and by the balance 
of harmonic versus inharmonic energy in the voice. 
Formant frequencies accounted for an additional 
12%/12% of variance. Remaining variance appeared 
largely idiosyncratic. Notably, F0 did not emerge. 
Implications for voice recognition are discussed. 
 
Keywords: voice quality, voice acoustics, variability, 
principal component analysis 

1. INTRODUCTION 

What makes your voice yours? The human voice 
provides significant clues to personal identity. 
Nevertheless, individual vocal behavior during voice 
production is highly variable. Although listeners can, 
to some extent, cope with this variability to establish 
a stable identity percept, across voices intra-speaker 
variability makes recognition and discrimination 
challenging tasks [1–5]. Despite increasing attention 
to personal voice quality, little is known about the 
nature or extent of intra-speaker variability, and how 
it differs across speakers. 

Prototype-based approaches are often invoked to 
account for the computational/neural processes 
underlying voice identity perception [6–8]. In these 
accounts, each voice is represented in terms of its 
deviations from a prototype voice, which resides at 
the center of a multidimensional acoustical ‘voice 
space.’ Deviations from prototypicality are stored as 
unique ‘reference patterns’ for each identity [9, 10]. 
While these models account for how listeners tell 

voices apart, they are underspecified with respect to 
how within-speaker variation affects formation of 
reference patterns, and thus the extraction of voice 
identity [11]. 

Ample evidence exists for striking similarities 
between face and voice identity processing [7, 12, 
13]. It has become increasingly clear that natural 
variability within faces (for example, with changes in 
orientation or emotion) is essential to learning new 
faces [14–16]. Our study is informed by [17], which 
used principal component analysis to investigate how 
images of the same person vary across different 
photos of that person. The first few components to 
emerge for analyses of individual faces were 
consistent across faces of different identities, but the 
dimensions that appeared in later components did not 
generalize well from one face to another.  

Here, we evaluated voice variation both within 
and across speakers by employing principal 
component analysis. The components that emerge 
from such analyses can be thought of as forming 
dimensions of an acoustic space specific to a given 
voice, in which that voice varies. Based on [17] and 
on cognitive models of voice processing, we 
hypothesized that a few dimensions would 
consistently emerge from analyses of individual 
speakers, but that much more of what characterizes 
vocal variability within a speaker would be 
idiosyncratic. We tested this hypothesis against 
multiple sentence productions from 100 native 
speakers of English, using a suite of measures that 
map between acoustics and perception of voice 
quality [18]. Additionally, we examined the 
dimensions characterizing acoustic variability across 
speakers and compared these to within-speaker 
acoustic variability. 

2. METHODS 

2.1. Speakers and voice samples 

The voices of 50 female and 50 male speakers drawn 
from the UCLA Speaker Variability Database were 
used in this experiment [19]. All were native speakers 
of English, similar in age (F: 18-29, M: 18-26), with 
no known vocal disorder or speech complaints, and 
all were undergraduate students at the time of 
recording. Recordings were made in a sound-
attenuated booth at a sampling rate of 22 kHz using a 
microphone suspended from a baseball cap worn by 
the speaker. 



The database provides significant within- and 
between-speaker variability. Speakers were recorded 
on 3 different days and performed multiple speech 
tasks (e.g., reading, unscripted speech tasks, 
conversations). The current study used recordings of 
5 Harvard sentences [20], read twice each day (a total 
of 6 repetitions per sentence over 3 recording 
sessions). As such, variability reported in this paper 
was calculated over each sentence production and its 
scope is limited to the reading task. 

2.2. Measurements and data processing 

Acoustic measurements were made automatically 
every 5 ms on vowels and approximants excerpted 
from each sentence, using VoiceSauce [21]. The 
acoustic parameters included: fundamental frequency 
(F0); the first four formant frequencies (F1, F2, F3, 
F4) and formant dispersion (FD, often correlated with 
vocal tract length [22]), calculated as the average 
difference in frequency between each adjacent pair of 
formants; the relative amplitude of the cepstral peak 
prominence in relation to the expected amplitude as 
derived via linear regression (CPP) [23]; root mean 
square energy calculated over five pitch pulses 
(energy); the amplitude ratio between subharmonics 
and harmonics (SHR) [24]; the relative amplitudes of 
the first and second harmonics (H1*-H2*), the 
second and fourth harmonics (H2*-H4*), the spectral 
slopes from the fourth harmonic to the harmonic 
nearest 2 kHz in frequency (H4*-H2kHz*), and from 
the harmonic nearest 2 kHz to the harmonic nearest 5 
kHz in frequency (H2kHz*-H5kHz). Values of 
harmonics marked with * were corrected for the 
influence of formants on harmonic amplitudes [24, 
25]. As a set, these measures constitute a 
psychoacoustic model of voice quality [18]. 

Frames with missing or obviously erroneous 
parameter values (for example, impossible 0 values) 
were removed. Next, for each speaker, the obtained 
values of each acoustic variable were normalized with 
respect to the overall minimum and maximum values 
from that speaker’s entire set of samples, so that all 
variables ranged from 0 to 1. Then, for each sentence 
production, a smoothing window of 50 ms (10 
observations) was used to calculate moving averages 
of the 13 variables during that sentence. The 
corresponding moving coefficients of variation were 
also calculated as estimates of signal variability, so 
that the input to the principal component analysis 
included both steady-state and time-varying aspects 
of voice quality. Across speakers, the above 
winnowing and post-processing steps resulted in 
about 515k data frames (F: 266k, M: 249k). 

2.3. Principal component analysis 

In principal component analysis (PCA), variables that 
are correlated with one another but relatively 

independent of other subsets of variables are 
combined into components, with the goal of reducing 
a large number of variables into a smaller set which 
are thought to reflect internal structures that have 
created the correlations among variables. As 
moderate correlations were expected between 
variables, we employed an oblique rotation to create 
the simplest possible factor structure for our data [26, 
27]. For within-speaker analyses, PCA was 
performed separately on each individual talker’s 
measurement data to reveal the dimensions of the 
voice variability space for that particular voice. For 
combined speaker analyses, PCA was performed 
separately on data from females and males, pooling 
the 50 speakers’ data in each analysis. PCs were 
restricted to the resulting factorial solutions with 
eigenvalues greater than 1 [29], which was also 
visually confirmed with Scree plots [30]. In our study, 
the combination of variables with loadings at or 
exceeding 0.32 on a given component were 
considered to form a principal component [31].  

3. RESULTS 

Although all acoustic variables were entered 
simultaneously into the analyses, for brevity they are 
grouped into 5 categories, following [32]: i) F0; ii) 
formant frequencies (F1, F2, F3, F4, FD); iii) 
spectral noise (CPP, energy, SHR); iv) source 
spectral shape (H1*-H2*, H2*-H4*, H4*-H2kHz*, 
H2kHz*-H5kHz); and v) variability (coefficients of 
variation for all measures).  

3.1. Within-speaker PCA: Common dimensions for 
individual speakers 

Across individual speakers the total number of 
retained components (PCs) having eigenvalues 
greater than 1 ranged from 6 to 9. These components 
accounted for 65%-74% (M=69%) of the cumulative 
variance for individual female speakers and 62%-
73% (M=68%) for individual male speakers. 

We counted the number of times each acoustic 
category appeared in a within-speaker solution for 
each of the 100 speakers. Fig. 1 shows the distribution 
of variables and weights for the variables that 
emerged in the first two components (PC1, PC2). The 
first component accounted for 17%-23% (M=20%) 
and 20%-25% (M=22%) of the variance for females 
and males, respectively. For both females and males, 
the most frequently emerging variable in PC1 for 
individual speakers is variability (dark grey bars in 
PC1). (Detailed sub-analyses appear below.) 

For female speakers, PC2 accounted for 10%-16% 
(M=12%) of variance. The variable most frequently 
associated with this component for each of the 
speakers was formant frequencies (black bars in 
PC2). For male speakers, the second component 
accounted for 10%-14% (M=12%) of the variance.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Distribution of acoustic parameters 
plotted (stacked histogram) against the rotated 
component loadings (weight). 

 

While the measures associated with this component 
varied somewhat across the individual speakers, 
formant frequencies and variability appeared more 
frequently than other variables. After these two PCs, 
the remaining variance was largely idiosyncratic, 
with the dimensionality of the voice space differing 
for different speakers. For example, the component in 
which F0 emerged ranged from PC3 to PC8 across 
individuals. Similar patterns were observed for the 
rest of the measures.  

Recall that the variability measure included 
coefficients of variation derived from all 13 acoustic 
variables. Table 1 summarizes the observed patterns 
of weights for individual variables on the rotated 
component loading for the first two PCs. The column 
labelled ‘primary variable’ shows the variable with 
the largest weight within each component. The next 
most weighted variable in that component is listed as 
the secondary variable. The shaded cells indicate the 
variability measures. 

This closer analysis of the variability measures 
revealed that for many speakers (both female and 
male) the most variance is accounted for by the 
combination of variability in source spectral shape 
and spectral noise. An additional analysis further 
revealed that while across speakers all 4 measures of 
source spectral variability (H1*-H2*, H2*-H4*, H4*-
H2kHz*, H2kHz*-H5kHz) emerged in the first 
component, spectral slope variability in the higher 
frequencies — H2kHz*-H5kHz — was the 
dominant measure. The other important emerging 
variable, spectral noise variability, was mostly related 
to variability in CPP. Additionally, for many female 
speakers variability in formant frequencies was the 
most representative variable in the first component. 

For both female and male individual speakers, 
formant frequencies and their variability emerged 
as the second PC. In this component, the F4 and FD 
measures appeared most important across speakers. 

Notably, except for a single male speaker, F0 did not 
emerge in the first two components. 

 

Table 1: Patterns of weights on the rotated 
component loading for acoustic variables in the first 
two PCs across speakers. 
 

PC Primary 
variable 

Secondary 
variable 

# of 
speakers 

1 

spectral shape 
variability 

noise 
variability 

F: 40/50 
M: 44/50 

formant 
frequency 
variability 

noise 
variability 

F: 3/50 
M: 3/50 

formant 
frequencies N/A F: 4/50 

formant 
frequency 
variability 

noise F: 3/50 

noise spectral shape 
variability M:2/50 

spectral shape N/A M: 1/50 

2 

formant 
frequencies 

formant 
frequency 
variability 

F: 50/50 
M: 15/50 

formant 
frequency 
variability 

formant 
frequencies M: 34/50 

F0 spectral shape M: 1/50 
 

3.2. Between-speaker PCA: “General” voice spaces 

For both female and male speakers, the total number 
of extracted PCs was 8, accounting for 67% of the 
cumulative variance for female speakers and 66% for 
male speakers. Not surprisingly given how consistent 
results were across individual speakers, patterns of 
acoustic variability in these multi-talker spaces 
largely mirrored the patterns found within speakers. 
The first PC was composed of variability in source 
spectral shape and spectral noise, accounting for 
18% and 20% of variance across females and males, 
respectively. As was the case with within-speaker 
analyses, variability in H2kHz*-H5kHz and CPP 
were the most important variables for this PC. 

The second component accounted for 11% of 
variance in female voices, and corresponded to 
formant frequencies. For males, spectral slope in 
the higher frequencies and F2 accounted for 10% of 
variance in the combined acoustic data. The opposite 
was observed for the third component: an additional 
10% of the variance was accounted for by the higher 
frequencies and F2 for females; formant frequencies 
accounted for 9% of the variance in male voices. F0 
only emerged in the later components (PC5 for 
females, PC4 for males) and accounted for very little 
variance in the data (6% for females, 7% for males). 

4. DISCUSSION AND CONCLUSIONS 

Variability is a key factor in models of voice 
perception and speaker identification. Using principal 
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component analysis, this study identified voice 
quality measures that accounted for perceptually 
relevant acoustic variance both within individual 
talkers and for the pooled groups of speakers. Unlike 
previous studies of within-talker variations in voice 
(e.g., [33]), this study included multiple sustained 
utterances from large numbers of male and female 
speakers, and included variation within and across 
utterances and over time.  

As hypothesized, results paralleled [17]’s for 
within-face variability. The first two PCs, which 
accounted for the most acoustic variability (but not 
the majority of variability) within a speaker, were 
shared by nearly all speakers. For both females and 
males, the combination of higher-frequency harmonic 
and inharmonic energy (associated with the degree of 
perceived breathiness or brightness [34]), accounted 
for the most variance within talkers. Formant 
frequencies and their variability also appeared to 
explain considerable within-voice acoustic variance; 
formant dispersion, associated with vocal tract length 
[22], appeared to be the core variable in this 
component. However, the majority of within-person 
acoustic variability was in fact idiosyncratic—the 
talker-specific dimensionality of the derived voice 
spaces differed for different talkers. 

Similar dimensions also emerged when data from 
all male and female speakers were analyzed in two 
group PCAs. Although this finding may appear trivial 
given the homogeneity of the individual results, in 
fact there is no a priori reason why individual 
solutions should have coincided as they did, and 
hence no a priori reason why individual and “general” 
acoustic spaces should be so similar. 

The fact that F0 did not emerge in the early 
retained components for either the within-speaker or 
group analyses is a bit puzzling given that listeners 
are often sensitive to even small differences in F0 
during voice processing [32, 34–37]. This finding 
might be due to the use of read speech in the present 
study, during which F0 variability is often limited. 
While F0 is useful for telling people apart, it might 
have ignorable perceptual weighting in tasks such as 
“telling people together” [5], which depend on 
within-, rather than between-speaker differences in 
voice. Alternatively, the lack of a major F0 
component in our results may be an artefact of our 
normalization technique, which was based on 
acoustic ranges, but did not take into account 
differences in perceptual sensitivity to different 
variables. However, we note that previous studies 
reporting an F0 factor have used similar 
normalization procedures and steady-state vowels 
(e.g., [33]). This apparent discrepancy between 
acoustic structure and perceptual data requires further 
consideration. 

These results have implications for current 
prototype models of voice processing [6, 7, 38], 

which are underspecified with respect to within-
person variability in voice. Our results suggest that 
the within-person reference patterns are mainly 
computed over the balance of harmonic versus 
inharmonic energy and formant frequencies in the 
voice. Likewise, group analyses suggest that the 
“general” voice spaces are formulated with reference 
to the same attributes. These and the remaining 
idiosyncratic vocal behaviors form a person-specific 
voice space. These individual voice spaces could then 
enter into a “general” voice space, in which between-
speaker differences in voice are evaluated. 

Perceptual processes can only make use of the 
acoustic input they receive, so understanding the 
structure of acoustic voice spaces can provide insight 
into why voice perception functions as it does. Our 
results suggest that perception of unfamiliar voices is 
a two-part process. The fact that individual and group 
voice spaces have a similar acoustic structure 
suggests that in one part, listeners find the position of 
the voice in a “general” voice space relative to the 
overall prototype for that population of speakers. The 
large amount of idiosyncratic acoustic variance 
suggests that a second stage of processing is needed, 
in which these rather under-specified individual voice 
patterns are separated from their nearest neighbors in 
the general voice space, using ad hoc featural 
analysis. Such a scenario is broadly consistent with 
the finding that voice discrimination requires both 
right (pattern recognition) and left (featural analysis) 
hemisphere participation [40]. 

In conclusion, our study applied principal 
component analysis to identify measures that 
characterize variability in voice quality within and 
between speakers. A few components were shared 
across speakers, but most patterns of within-speaker 
acoustic variability in voice were idiosyncratic. Our 
results further showed that the measures that were 
frequently shared by individual speakers also 
characterized voice variation across speakers, 
suggesting that individual and “general” voice spaces 
are indeed composed of a similar acoustic structure. 
Our results have implications for unfamiliar voice 
perception and processing, in particular, providing 
evidence for what comprises a reference pattern in 
individual and universal voice spaces. Going forward, 
it will be essential to consider how these identified 
measures of within-person variability would be used 
in listeners’ identity processing behaviors and how 
they interact with between-speaker differences. 
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