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ABSTRACT 
 
This paper describes a novel computational toolkit for 
tonal analysis: DAPPr (Discrete Annotations for 
Pitch and Prosody). In particular, in this paper, we 
describe a first-pass method for automatically 
extracting target segments for analysis using a trained 
deep learning neural network. This automatic 
segment extractor is designed to work language-
independently with minimal or zero training data. 
Together with the already-implemented DAPPr suite, 
these tools produce discrete pitch annotations that are 
consistent, objective, and compatible with other 
techniques and tools for analysis. While this tool was 
designed with tone languages in mind, the segment 
extraction and pitch analysis methods are relevant to 
the study of prosody more generally or even simply 
for automatic vowel detection.  The aim of this 
analytical suite is to promote the inclusion of 
objective, replicable pitch data in documentary, 
descriptive, or theoretical materials.  
 
Keywords: Tone, prosody, pitch, language 
documentation 

1. INTRODUCTION 

To date, it remains an open question how best to 
include pitch information in linguistic materials. For 
tone languages, the standard is to annotate data with 
more or less phonemic tone markings (diacritics, 
numerals, IPA tone levels, etc.). But, as recently 
highlighted by Remijsen [15], tone marking is not 
pre-theoretical; it is an analytical choice, which can 
obscure the surface realization of tones, or worse, 
may not be an accurate representation of the data. 
Similar points have been raised for intonation [9], 
where it is even less standard to include any sort of 
prosodic markings in most linguistic representations 
(unless focusing specifically on prosody). Worse still, 
many linguists are still uncomfortable with tone [13] 
and thus may exclude tone marking altogether, 
rendering the materials of little use to future 
researchers interested in the prosodic system. Past 
work on computational methods in linguistic 
description has also argued for the utility of including 
such a level of annotation in documentary materials, 
both to assist current analysis and to make the 
materials maximally useful for future research [7]. 

In light of this situation, we find a need for a 
standard method of including representations of 
phonetic pitch information in linguistic materials. We 
turn to discrete annotations as a way to capture broad 
phonetic information, much in the way of broad 
phonetic segmental annotations.  

In making the analysis of pitch information more 
accessible, we find that it is essential to also make 
data processing itself accessible. To this end, we have 
begun development of a module to accompany the 
main DAPPr analysis software to assist in pre-
processing the data. In this paper, we present the first 
iteration of the module, and find promising results.  

To address these issues, we are developing a 
computational toolkit, DAPPr (Discrete Annotations 
of Pitch and Prosody). DAPPr takes as input a 
recording and outputs normalized annotations that 
can serve as an intermediate between raw phonetic 
information (i.e. f0 in Hz) and a phonemic analysis. 
The annotations created by DAPPr are designed to 
create an objective, replicable, and digital version of 
the system of dashes often found as a descriptive 
lingua franca for the surface realization of tone. It is 
designed to be used by anyone, regardless of technical 
training or familiarity with tone and prosody. In the 
process of producing discrete pitch levels, the toolkit 
also implements a range of related easy-to-use 
functions, including f0 extraction, correction, and 
normalization, duration measurements, and logging 
of an individual’s pitch range across recordings, all 
functions that may be useful in a variety of research 
contexts. In this paper, we summarize the 
functionality of DAPPr for discrete pitch annotation, 
and will describe the development of automatic vowel 
extraction (AVE) to automatically pre-process data.  

We first briefly address previous computational 
approaches to pitch annotation and vowel extraction 
in §2, then turn to a basic overview of the DAPPr 
workflow. §4 lays out the deep learning neural 
network for AVE, and in §5 we conclude.  

2. PREVIOUS APPROACHES 

Previous work in automatic tone annotation has 
primarily focused on identifying phonemic tone 
categories. Many methods have been focused on 
automating phonemic transcription for languages 
with known tone systems. These have included 
Hidden Markov Models [4][11][20][21], neural 
networks [1], and clustering [5].  



 Methods for analysis of unknown tone systems are 
less common. Language-independent clustering is 
implemented in the software Toney [3]. This tool aids 
the user in grouping perceptually similar tones 
together with the goal of faster identification of 
phonemic categories. However, it is still focused on 
speeding phonemic analysis, and less on preserving 
pitch information for future research. We aim to fill 
this gap with DAPPr. 
 Automatic identification of target sequences has 
also been addressed in previous work. Projects like 
ProsodyLab [6], Montreal Forced Aligner [12] and 
FAVE [16] have all made strides towards 
streamlining data processing. However, forced 
alignment typically requires significant training data 
for a specific language and often requires full, 
accurate transcriptions. Although the ideal case is to 
be able to exhaustively segment recordings, the 
amount of pre-processing necessary for these 
techniques can be prohibitive, especially for low-
resource languages. 
 Previous language-independent implementations 
such as {Deep} Phonetics Tools [18], a deep neural 
network for vowel extraction, perform at a high level 
of accuracy. However, it also requires input 
segmented into CVC sequences, which does not 
cover the kind of data typically used in pitch 
extraction and analysis.  
 Thus, we identify a need for an automatic vowel 
extractor that is language-independent, easy to use, 
and can be paired with the pitch extraction algorithm 
to create completely automated pitch annotations. 
  

3. PITCH EXTRACTION, NORMALIZATION, 
AND DISCRETIZATION 

DAPPr is implemented in the open-source 
programming language Python, with additional 
support from Praat and Python packages scikit-learn 
[13] and Parselmouth [10]. The tool is equipped with 
a simple graphical user interface, making it accessible 
without the need to interact directly with code.  
 The pitch extraction tool takes as input an audio 
file (in .wav format) and accompanying TextGrid 
annotated to indicate target segments (generally 
vowels) for analysis. F0 measurements are extracted 
via a Praat script every 10ms throughout the segment. 
 A major benefit of DAPPr is that it will not only 
extract f0 but also apply algorithms to do some 
automatic cleaning for failure of the pitch extraction 
algorithm, with the aim of retaining as much data as 
possible for the normalization steps.  
 After the data are cleaned, the f0 values undergo 
normalization. We follow a widely practiced 
normalization procedure and normalize f0 to 
semitones [2][8][17]. We choose here to normalize to 

a speaker-specific f0, the mean of the speaker’s range. 
This mean is tracked across multiple recordings to 
increase accuracy in normalization.  
 Finally, DAPPr discretizes the pitch data. This step 
considers all f0 information from all recordings for a 
given speaker and uses as a maximum and minimum 
value the 99th and 1st percentile of the speaker’s range 
to reduce the effect of any remaining outliers. The 
speaker’s range after normalization is divided into 
equal bins, or levels, the number of which can be set 
by the user as a parameter of the tool. The levels are 
labeled numerically such that 1 refers to the lowest 
level. Each token is sampled at 2-3 points, depending 
on the needs of the researcher, and each sample is 
then assigned to the appropriate level. 
 DAPPr outputs include tab-delimited text files 
containing all raw and normalized measurements, as 
well as TextGrids with a new tier of discrete level 
annotations, which can also be imported in ELAN and 
merged with other layers of annotation. 

4. AUTOMATIC VOWEL EXTRACTION 

4.1. Methodology 

In this section, we present a tool for automatic vowel 
extraction in data processing. We approach the 
automatic vowel extraction tool with the following 
criteria in mind: it must be language-independent, 
require minimal, if any, training data, and be able to 
identify segments of interest for pitch analysis. 
Crucially, identification of vowel quality is not 
necessary for pitch-extraction, and since vowel 
quality annotations are to some degree language-
dependent, we choose to simplify vowel extraction to 
a binary classification task: identification of whether 
the given acoustic material belongs to a vowel or not.  
 Our implementation takes as input an audio file 
with no annotations and produces a TextGrid with 
target segments marked as ‘V’. The results of this can 
be inspected or fed into the main DAPPr analysis 
suite.  
 Training data totalling 130 minutes included 
eleven languages and 68 speakers. Several languages 
were drawn from the UCLA Voice Quality project 
[19], a dataset including wordlists recorded in a 
variety of languages by multiple speakers. The 
languages selected from this data set, Santiago 
Matatlan Zapotec, San Juan Guelavia Zapotec, 
Luchun, Yi, Bo, Black Miao, and Mazatec, were 
chosen because they were annotated to the level of 
detail required in the analysis of the tool. We 
supplement this data with field recordings in Seenu, 
Santo Domingo Albarradas Zapotec, Teochew, and 
Tommo So.  
 Thus the training dataset covers a large number of 
speakers from typologically different languages, and 



from different annotators. The purpose of these 
choices is to allow the model to generalize across 
different data to create a model that is not overly 
influenced by one subset of the data.  
 The training set is annotated such that vowels are 
marked as 1 and non-vowels as 0, including 
consonants, silence, and non-speech noise. The 
training data are featurized using the Praat algorithm 
to generate spectral coefficients and intensity 
measures via the Parselmouth interface. These data 
are then merged with human-made TextGrids 
delineating the boundaries of the target vowels to 
create a training set.  
 The model itself is a multilayer perceptron that is 
trained on the data described above.  The model is 
then presented with data outside of the training set 
and predicts the locations of the vowels. The output 
of the model is then smoothed to reduce noise, and 
the results of the module are written to a TextGrid, 
where ‘V’ marks the locations identified as 
containing a vowel, and blank annotations in other 
intervals. This TextGrid can be directly input into the 
pitch analysis module of the DAPPr tool, resulting in 
fully automated pitch annotations that can be 
incorporated with other information. 
 Because the training data does not require any 
phonological information such as the identity of the 
segments, training data can be made before 
phonological analysis is complete, allowing for use of 
DAPPr in early-stage linguistic description and 
documentation. 
 

4.2. Model Results 

     In testing the model, we ran the tool on languages 
that were outside of the training dataset. For the 
purposes of qualitatively analysing the model’s 
predictions, we take as a case study Mandarin, 
specifically a 350 sec recording of a wordlist 
elicitation. For Mandarin, we had human annotations 
for all of the vowels in the recording. 
     Figure 1 compares a representative DAPPr output 
for the model-identified vowels (top) and the human-
identified vowels (bottom) for an utterance in 
Mandarin Chinese.   This example shows the possible 
outcomes of using this tool in conjunction with 
DAPPr, and comparing the DAPPr annotation gives 
good insight into the quality of the vowel annotation 
for these purposes. From left to right, segments A, B, 
C and D are captured in both tools, although the start 
and end points for the model-predicted vowels are 
slightly different in some cases (around 10 ms). The 
DAPPr output for both are also the same. For the 
segment labelled C, DAPPr excluded the segment 

from pitch analysis (labelled as X) in both models 
because of poor pitch tracking.  
 

Figure 1: DAPPr output for model-identified 
vs. human-identified vowels. Each vowel label 
is replaced with a capital letter to allow for easy 
comparison. 

 
 
Segments E, F, and G demonstrate divergent 
behaviour between the model and human annotator. 
In segment E, the model failed to pick up on a 
segment that was annotated by a human annotator. In 
segment F, the model identified a segment with a start 
time that is 30 ms away from that of the human 
annotator. In addition, the resulting DAPPr 
annotations for the model output are (3,3) as opposed 
to (3,2) for the span annotated by a human. Finally, 
for G, the model failed to identify any vowel at all. 
However, the vowel identified in the human output is 
excluded in the DAPPr annotations, so there is no loss 
of information in this case.  
      Generally, in cases where the model fails to 
identify vowels, there appears to be some lack of 
robustness in the vowel, such as low amplitude or 
significant creak. Many of these factors also interfere 
with DAPPr predictions via poor pitch tracking. The 
correlation between poor vowel placement and poor 
pitch tracking means that despite some failures of the 
model in terms of absolute vowel identification, the 
output of the model is still largely usable for pitch 
analysis, since these spans would likely be excluded 
from DAPPr analysis anyway. Moreover, using 
automatic vowel extraction algorithms may also serve 
as a kind of filter that excludes acoustic information 
that would fail at a future analysis step. This approach 
would reduce reliance on later ad hoc data-cleaning 
algorithms in the data analysis pipeline. 
 All-in-all, there is relatively little information lost 
in using a generally trained vowel extraction model 
for data processing, and huge gains are made in the 
volume of data that can be processed.  
 The automatic vowel extraction module can be 
used in its general form for DAPPr-style tasks 
involving automatic data cleaning, pitch extraction, 
normalization and discretization. In addition, it is 



possible to tune the model to data from a specific 
language in order to create a within-language model. 
 To test the quality of the within-language model, 
we took a single recording (206 seconds) of a male 
speaker of Seenku reading target words in a frame 
sentence, and annotated it by hand. We then trained 
the model on different subsets of data (10%, 25%, 
30%, 40%, and 80%) and tested it on three 
recordings: the same recording, a different recording 
done in the same style by the same speaker, and a 
similar recording by a different (female) speaker of 
Seenku. The results are given in Table 1. 
 In this case, we are interested in how closely a 
within-language model will match the human 
annotations. Thus, we measure performance using a 
metric called coverage, which is the percentage of 
segments annotated by the human researcher that 
have both a start and end timepoint within 20 ms of 
an interval in the model output.  
 

Table 1: Degrees of coverage by amount of 
training data, within and across speakers. 

 
% 
used 

Same 
recording 

Same 
speaker 

Different 
speaker 

10 0.84 0.64 0.59 
25 0.9 0.76 0.57 
30 0.91 0.80 0.57 
40 0.91 0.83 0.57 
80 0.91 0.83 0.57 

 
We find that using as little as 10% of the training file 
(20 seconds of annotated data) can correctly identify 
around 85% of target vowels in the same recording, 
65% in the same speaker, and 59% in a speaker of the 
language of the other gender. Increasing the 
proportion of training data improves the within-
speaker results until around 40% (80 seconds of 
annotated speech) and gives a slight drop in 
performance for the other speaker. Thus, with this 
tool, it appears that even a small amount of training 
data can be used to bootstrap annotation of vowels 
within a project. While this requires some preparation 
of the data, it has the potential to reduce the amount 
of time necessary to create high-fidelity annotations 
within a set of similar recordings, a use that may 
prove helpful in a range of research contexts. 
 Both uses of the vowel extraction module are 
beneficial for certain tasks. The general model can be 
distributed pre-trained and represents ease of use, 
generalizability to a large number of languages, and 
data-cleaning properties. In addition, the overall 
quality of the general model is sufficient for, at the 
very least, broad phonetic analysis such as that in 

DAPPr.  A within-language model requires some 
training data, which can be used to iteratively 
bootstrap a larger dataset for better models. However, 
a within-language model also provides a high level of 
control and the potential to fine-tune the model to 
specific desired properties of the language, with the 
trade-off of a higher cost to using and training the 
model.  

5. CONCLUSION 

In this paper, we have presented an automated 
workflow for discrete pitch level annotations that 
incorporates automatic vowel extraction. We find that 
even with a simple DNN, it is possible to vastly 
reduce the amount of human effort necessary to 
annotate recordings with pitch information. The 
preliminary results presented above demonstrate the 
potential of the tool in streamlining data processing 
for phonetic analysis of vowels, particularly pitch. 
Future directions for this project include: comparing 
machine learning algorithms, building a larger model, 
and using DAPPr in a wider range of languages and 
research questions. 
 Our ultimate goal in developing DAPPr is to 
remove both psychological and practical barriers for 
the incorporation of pitch information in linguistic 
materials. An automated system of discrete level 
annotations based directly on the acoustic signal 
promotes transparency and replicability of prosodic 
findings and helps ensure that important linguistic 
data is there for future generations.   
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