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ABSTRACT

Measurements of palate location can assist ultra-
sound (US)-based analysis of articulatory tongue
motion by providing complementary information
about oral cavity constriction. They also provide a
rigid reference frame relative to which tongue mea-
surements from different time points can be regis-
tered. Locating the palate in US images is challeng-
ing because it is generally invisible except during
swallowing, and even then, it is often not readily rec-
ognizable in any single frame. This paper introduces
a new automated method to extract a palate con-
tour from an US video acquired during swallowing.
The method is based on a cumulative echo skeleton
image, which highlights structures that are consis-
tently located over time. In experiments with 22 US
videos, most of the automatically extracted palate
traces were within 3 mm of a manual palate trace in
terms of mean sum of distances error, demonstrating
the potential of the proposed approach.
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1. INTRODUCTION

Ultrasound (US) imaging is ideally suited and
widely used to study tongue shape and motion dur-
ing speech. However, tongue location and shape
alone fail to fully capture phonetically relevant vari-
ables pertaining to constrictions of the oral cavity.
To remediate this, it is useful to measure the config-
uration of the tongue relative to the palate, which
in turn requires locating the palate in the same ref-
erence frame as the tongue. Palate measurements
also provide a rigid reference frame for registration
of US tongue data over time [9], and for studying the
influence of the palate shape on articulation [2].

While dental casts provide detailed palate mea-
surements (e.g., in electropalatography), measuring
the palate from the US images themselves is quick
and inexpensive in comparison [12]. Unfortunately,
the palate is usually invisible in US images be-
cause of the air separating it from the tongue. Re-
cently, Wrench [14] demonstrated an indirect, “vo-
cal tract carving” approach that automatically in-

fers the palate surface as the upper boundary of the
space reached by the (automatically tracked) tongue
as speech is continuously elicited from a speaker.
This method is appealing because it can be used in
real-time. However, it requires high speed imaging
to capture the instants where the tongue touches the
palate. It also requires eliciting such contacts over
the entire oral cavity, which can be challenging in
populations with speech impairments.

The traditional approach is to directly delineate
the palate in recordings where the speaker is swal-
lowing or holding liquid in his/her mouth [13, 3, 9].
Then, US can reach the palate, causing a visible echo
in the US images. Edgetrak [8] offers a rudimentary
semi-automatic tool to fit a snake to manually an-
notated palate points on a single image. However,
in many cases, the palate is only partially visible
in any given image. Thus, Epstein and Stone [3]
recommend using a short video clip acquired dur-
ing swallowing and manually accumulating partial
palate traces over a series of frames as a bolus of wa-
ter or saliva travels through the mouth and different
parts of the palate become visible. This is challeng-
ing for the operator, who must simultaneously see
through time and space to delineate the palate in a
piecewise fashion from one frame to the next.

This paper proposes a new automatic method
to extract the mid-sagittal palate contour from US
videos of a swallow that overcomes the aforemen-
tioned difficulty. The method, described in Sec-
tion 2, is based on a cumulative echo skeleton im-
age, which (1) highlights features of the image that
are consistently located over time (and might corre-
spond to the palate) and (2) connects the parts of the
palate that are visible in different frames as a sin-
gle structure. Section 3 describes experiments on
22 swallow videos, wherein automatically extracted
palatal traces were compared against a manual trace,
with promising results. A discussion, including di-
rections for future work, is presented in Section 4.

2. METHOD

The proposed palate extraction method comprises
processing at the level of (1) the individual frames



composing the swallow video sequence and (2) the
sequence itself. The individual image processing
step, described in Section 2.1, extracts a line draw-
ing, called a skeleton, that characterizes the shape
of the brightest ridge-like structures (echoes) in the
image (Fig. 1, right). At the sequence level, the
skeletons from the individual images are summed
over time, leading to a cumulative echo skeleton im-
age (Fig. 2), which emphasizes the structures that
are most persistent and consistently located over the
duration of the video sequence. Since the palate
is mostly rigid and immobile (unlike the tongue or
imaging artefacts), the cumulative echo skeleton im-
age carries meaningful information about its shape
and location. This information is extracted using
thresholding, clustering and robust curve fitting op-
erations prior to shape refinement using a snake fit-
ted to one or more of the original US images, as
shown in Fig. 3 and detailed in Section 2.2.

2.1. Frame-level processing

Fig. 1 shows the processing steps applied to each
image in the swallow sequence. The bright ridge-
like echoes in the US image, typically the palate and
tongue, along with some imaging artefacts, are en-
hanced within a phase symmetry map [7, 6]. This
map is obtained by first filtering the image using
odd and even log-Gabor filters at different scales and
orientations (5 scales and 14 orientations were used
here). Phase symmetry is the average amplitude dif-
ference in the responses from the even and odd filters
or, more intuitively, the degree of even symmetry or
“ridgeness” of the structures in the image. Fig. 1
(middle) shows a typical result.

Figure 1: Processing of individual images. From
left to right: original image, phase symmetry map,
skeleton of thresholded phase symmetry image.

The phase symmetry map is thresholded to pre-
serve only the brightest and largest echoes from the
original images. A skeleton of these structures then
extracted by finding their medial axis. The medial
axis is the locus of points within a shape that are
equidistant from two or more of the shape bound-
ary points [1]. Many methods exist to compute me-
dial axes; here, Rezanejad et al’s robust average out-
ward flux method [11] is used. Typical skeletons are

shown in Figs. 1 (right) and 2.

2.2. Sequence level processing

The echo skeletons computed from individual US
images typically contain information about parts of
the tongue and/or palate and/or some imaging arte-
facts. One skeleton is generally insufficient to in-
fer the palate surface in a robust manner. For this,
one must exploit the temporal information contained
in the sequence of images. Thus, the skeletons ex-
tracted from the different images in the sequence are
summed to form a cumulative echo skeleton image,
as shown in Fig. 2. In this sum, each white pixel
from an individual skeleton image slightly increases
the intensity of the corresponding pixel in the cu-
mulative echo skeleton image. Immobile and per-
sistent structures like the palate contribute to similar
locations in the cumulative echo skeleton image over
time, leading to high signal levels, whereas moving
or non-persistent structures like the tongue or imag-
ing artefacts, though often brighter than the palate in
single images, contribute to more diverse locations
and lead to weaker signals.

Fig. 3 shows how the cumulative echo skeleton
image is processed to extract palate contours. Otsu
thresholding [10] is applied to its non-zero pixel in-
tensities to remove noise arising from non-persistent
structures in the US images. The locations of the
non-zero valued pixels in the thresholded image
are clustered using DBSCAN [4], an algorithm that
forms arbitrary numbers of clusters from spatial data
based on thresholds ε , the maximum distance be-
tween points within a cluster, and MinPts, the mini-
mum acceptable number of points within each clus-
ter. Here, ε = 20 pixels and MinPts = 10. The
widest cluster is selected as potentially containing
the palate. Within this cluster, the point of maximal
height is retained for each position along the hor-
izontal axis. This favours points arising from the
reflection of US off the palate rather than off the
tongue. A second order polynomial is then fitted
to the resulting points using RANSAC [5], a robust
fitting algorithm that finds the least-squares fitting
curve accounting for the largest number of inliers,
while rejecting outliers. Outliers are defined by a
maximum allowable distance to the curve (10 pixels
in this work). A cubic spline is then fit to the inliers,
which is then used to initialize a snake fit [8] to the
palate for refinement.

3. EXPERIMENTAL RESULTS

Automatic palate extraction was tested on US data
from 6 healthy subjects, 3 adults (A1-A3) and 3 chil-



Figure 2: Creation of the cumulative echo skeleton image. The 6 leftmost panels show sample US images from a
swallowing video sequence (top) and the skeletons extracted from each one (bottom). The rightmost panel shows
the cumulative echo skeleton image computed from the sum of the skeletons over time.

Figure 3: Palate contour extraction from the cu-
mulative echo skeleton image. The cumulative
echo sekeleton image (a) is thresholded (b) to en-
hance temporally persistent structures. The widest
cluster of white pixels is extracted from the thresh-
olded image (c). Data from the earliest US echoes
are removed (d), and a cubic spline is robustly fit-
ted to the remaining points (e). A snake is fitted to
US images to obtain palate contours (f).

dren (C1-C3), acquired during speech. Twenty-two
clips with swallowing, ranging in length from 48 to
154 frames, were manually extracted from the full
recordings. A reference palate contour was manu-
ally traced on one reference image in each clip. The
mean sum of distances (MSD) between the reference
palate trace u and the automatic palate trace v was
computed as

MSD(u,v) =
1

m+n
(

n

∑
i=1

min
j
||vvviii−uuu jjj||+(1)

m

∑
j=1

min
i
||uuu jjj− vvviii||),

where uuuiii (respectively vvv jjj) is the vector of x and y
coordinates of the ith (respectively jth) vertex of u

(respectively v), i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}.
Fig. 4 compares the automatically extracted palate

traces with the reference palate traces and reports
the MSD between them. Generally, the automati-
cally detected palate traces overlap fairly well with
the manual ones. However, the automatically de-
tected traces tend to be shorter, particularly towards
the back of the mouth. In several clips from child
subjects, the automatic palate trace matches quite
well to the location of the hard palate, which is rigid
and generally more visible in the images, whereas
the manual trace often also comprises the velum.
This suggests that the proposed method is most suc-
cessful at locating the rigid part of the palate. Ar-
guably, this is desirable for applications requiring
measurements of the relative configuration of the
tongue with respect to a rigid palate reference frame.

The method failed in a few cases. For subject
A2, it only detected a small segment of the palate
due to the relatively poor quality of the images in
this subject’s recordings, where even the tongue was
less visible than in other recordings. In subject
A3, the method detected the tongue instead of the
palate in two of three swallowing clips. Upon in-
spection, both clips were found to depict a resting,
fairly immobile tongue, for many frames before and
after the swallowing motion. Thus, the cumulative
echo skeleton image contained stronger contribu-
tions from the resting tongue than from the palate.
This points to the importance of feeding quality in-
put to the method. Ideally, this would include little
but the actual swallowing motion.

4. CONCLUSIONS

This paper presented a new method to automati-
cally extract the mid-sagittal palate contour from
US video sequences of swallowing by exploiting the



Figure 4: Automatic palate extraction results (solid red) and manual palate trace (dashed green) overlayed on the
reference image from each swallowing sequence. The MSD between the two traces is reported below each image.

A1, Swallow 1 A1, Swallow 2 A1, Swallow 3 A2, Swallow 1 A2, Swallow 1 A2, Swallow 3
MSD = 2.36 mm MSD = 4.24 mm MSD = 2.68 mm MSD = 4.00 mm MSD = 2.63 mm MSD = 5.49 mm

A3, Swallow 1 A3, Swallow 2 A3, Swallow 3 C1, Swallow 1 C1, Swallow 2 C1, Swallow 3
MSD = 8.35 mm MSD = 3.34 mm MSD = 2.96 mm MSD = 1.65 mm MSD = 2.84 mm MSD = 3.69 mm

C2, Swallow 1 C2, Swallow 2 C2, Swallow 3 C2, Swallow 4 C2, Swallow 5 C2, Swallow 6
MSD = 1.73 mm MSD = 2.18 mm MSD = 2.23 mm MSD = 2.79 mm MSD = 1.63 mm MSD = 1.99 mm

C3, Swallow 1 C3, Swallow 2 C3, Swallow 3 C3, Swallow 4
MSD = 1.63 mm MSD = 1.46 mm MSD = 1.81 mm MSD = 2.38 mm

persistence of the echoes generated by the palate
over time. The method was tested on 22 video se-
quences with promising results in terms of accuracy.
In future work, ideal or near ideal swallowing se-
quences could probably be extracted automatically
from larger speech video recordings by searching for
segments with large amounts of motion and weak
acoustic signal. Automated palate extraction using
spontaneous swallowing in US video sequences is
an important step towards facilitating more mean-
ingful articulatory measurements. It may also pro-
vide a useful rigid reference frame which can help
evaluate and compensate for some types of head mo-

tion (e.g. front to back) in the analysis of US record-
ings in the field, where sophisticated head motion
measurement devices may not be practical or avail-
able.
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