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ABSTRACT 
 
In forensic voice comparison (FVC) cases it is 
essential to make sure that conclusions are reliable, 
robust, and replicable. This is especially true for data-
driven FVC that relies on databases of speakers to 
estimate empirically the strength of the voice 
evidence. A key issue for such approaches is the 
validity of likelihood ratio (LR) output according to 
the specific speakers used for training and testing 
systems. The present study addresses this issue using 
simulated scores with different score distributions for 
training and test data. Experiments were replicated 
100 times by varying the sampling of (1) both training 
and test scores, (2) training scores only, and (3) test 
scores only. The results show that sampling both test 
and training scores yielded the largest system 
variability with Cllr varying from 0.03 to 0.51. 
 
Keywords: forensic voice comparison, likelihood-
ratio, sampling, Bayesian method. 

1. INTRODUCTION 

Forensic voice comparison (FVC) is a sub-discipline 
of forensic speech science, which is the application of 
phonetics, acoustics, signal processing and logic to 
legal cases [9]. A typical scenario for a FVC case is 
to compare recordings, one of an unknown offender, 
and the other of a known suspect typically recorded 
during the police interview (e.g. in the UK, China) [6] 
or through wiretaps (e.g. in Germany, China) [12]. 
The likelihood ratio (LR) framework has been 
extensively promoted in recent years [9,15,21,23]. 
The LR approach involves evaluating the similarity 
of the speech patterns in the disputed and known 
samples and assessing their typicality against a 
relevant population [8,10]. The outcome, which can 
be expressed using a numerical or verbal LR, is a 
measure of the strength of the evidence under 
competing propositions of the prosecution and 
defence (see further [10,14]). Calculating a LR 
involves two stages: (1) feature-to-score, and (2) 
score-to-LR. In stage one, measurements or 
observations from the training and test data are 
extracted to calculate SS and DS training and test 
scores. In stage two, training scores are used to 
generate coefficients [4] that are applied to test 
scores.  

It is important to evaluate system performance 
(i.e. its ability to separate same and different speaker 
samples) and this is widely done using the log LR cost 
function (Cllr) [5]. The lower the Cllr the more accurate 
the system is. The term system here refers to “a set of 
procedures and databases that are used to compare 
two samples, one of known sample and one of 
disputed sample, and produce a LR” [16]. Evaluating 
system performance is often carried out by taking a 
group of speakers (e.g. 60 speakers; [9]) and dividing 
them equally into training, test and background sets.  
The system is then trained and tested by using these 
three sets of speakers. Previous studies have shown 
that system performance varies when using 
demographically matched or mismatched speakers 
for the background population [8]. Different variables 
also yield different system accuracy [9,10,15,21,23]. 
However, most of these previous studies have only 
carried out the experiment once, with one 
configuration of speakers in each dataset. Relatively 
little is known about how stable system performance 
is if different arrangements of speakers are used.  

In [22], we conducted a study using spontaneous 
Cantonese speech from 64 speakers to explore the 
effect of replicating an experiment multiple times, i.e. 
by sampling different groups of training, test and 
background speakers from a relevant population. 
System performance (Cllrs) varied from 0.29 to 1.15 
when using different configurations of training, test 
and background speakers. However, because this 
study used spontaneous speech, the variability in 
system stability may have been caused by factors 
such as number of speakers and tokens used, channel 
mismatch, and recording qualities of different 
speakers. Therefore, in order to test purely the effect 
of the speakers used in each set, it is important to use 
highly controlled input data, rather than data derived 
from naturalistic speech. In the present study, same 
speaker (SS) and different speaker (DS) scores were 
simulated to address two questions. First, how is 
system stability is affected by sampling, i.e. does the 
system have a more stable performance if a different 
set of training, or test, or training and test speakers are 
used? Second, do some variables provide more or less 
stable LR output according to the specific sample of 
speakers used?   
 
 



2. METHOD 

2.1 Data simulation 
  
To generate controlled data, we simulated 
comparison scores for the training and test sets. In this 
way, the study does not focus on the feature-to-score 
stage and the make-up of the background set, 
although these are important issues that we explore in 
[22]. The scores were simulated under an assumption 
of normality. It is worth noting that scores from real 
speech data are often not normally distributed. 
However, normal distributions are used here for the 
sake of simplicity. Three sets of simulated scores for 
1000 speakers were computed using the rnorm 
function in R [1,20], resulting in 1,000 SS and 99,000 
DS scores. Panel (a) in Figure 1 shows the 
distributions of the simulated SS and DS scores, 
where the mean and standard deviation of SS scores 
(right) are 0.5 and 0.25, while the mean and standard 
deviation of DS scores (left) are -0.5 and 0.5. The DS 
scores have a higher standard deviation because in all 
FVC with multivariate LRs, the non-target values 
have a wider spread than the target values. In panels 
(b) and (c), the standard deviation of SS and DS 
scores and the mean of DS scores were kept the same, 
but the mean of SS scores was increased to 0.75 and 
1. The three different datasets each had different 
equal error rates (EER), in order to mimic variables 
with different speaker-discriminatory power. The 
data in panel (c) (EER = 2%) has the best speaker-
discriminatory power; cf. panel (b) (EER = 4%) and 
panel (a) (EER = 9%). This allows us to assess the 
effect of inherent speaker-discriminatory power on 
system stability. The three sets of scores were used as 
the pseudo-datasets for LR computation.  
 

Figure 1: Simulated SS (right) and DS (left) scores 
with different speaker-discriminatory power.  

 

 
 

2.2 LR computation and system evaluation 
 
Since the current study uses simulated scores, only 
the score-to-LR stage of LR computation is assessed 
here. Previous research shows that stable LR output 
can be achieved with 20 or more speakers in each of 
the training and test data [7]. Therefore, 20 training 
and test speakers were selected randomly from 
pseudo-datasets (a), (b) and (c) respectively, which 
led to 20 SS and 380 DS training and test scores. The 
training scores were used to generate logistic 
regression calibration coefficients [4] that were then 
applied to test scores to produce a set of 20 SS and 
380 DS calibrated log LRs. The Cllr was calculated to 
capture the system performance. The same procedure 
was repeated 100 times by using the LR calculation 
and testing in FVC package [13] in R [2,19]. The 
overall and interquartile range (IQR) of Cllrs are used 
to evaluate system stability.   
 

3. EXPERIMENT 
 
Three experiments were carried out with pre-defined 
sampling rules. The scores were sampled from 
pseudo-datasets (a), (b) and (c) in each experiment.  
 
3.1 Expt. 1: Sampling training & test scores.  
 
Different sets of scores were randomly sampled for 
both training and test data in each replication to 
explore the effect of score-sampling on system 
stability, and whether some variables (represented by 
EER conditions) produce more or less stable systems 
according to different samples of scores used.  
 
3.2 Expt. 2: Only sampling training scores. 
 
Different sets of scores were randomly sampled for 
the training speakers while keeping the test scores 
fixed in each replication. This aims to explore the 
sensitivity of training data to different speakers with 
regard to the speaker-discriminatory power of the 
variable. This allows us to explore whether it matters 
which training speakers we if the variable has a higher 
speaker-discriminatory power, i.e. lower EER.  
 
3.3 Expt. 3: Only sampling test scores. 
 
Different sets of scores were randomly sampled for 
the test data while the training scores were fixed in 
each replication. This explores the sensitivity of test 
data to different speakers and the feasibility of using 
the same LR-based FVC system for multiple cases.  



 

4. RESULTS 

4.1.  Experiment 1 
 
Figure 2 shows the variation in Cllrs by sampling 
different sets of training and test scores. (a), (b) and 
(c) indicate the pseudo-dataset that scores were 
sampled from. Overall Cllr ranges from 0.23 to 0.54, 
0.10 to 0.42 and 0.03 to 0.51 for sets (a), (b) and (c) 
respectively. Figure 2 shows firstly that the system 
stability varies considerably if different sets of SS and 
DS scores are used in each replication. Furthermore, 
sets (a), (b) and (c) yielded different system 
stabilities. Set (c) yielded a lower IQR than sets (a) 
and (b) (Table 1). However, set (c) also yielded a 
higher Cllr overall range (OR) and more outliers than 
sets (a) and (b). The results show that score-sampling 
has a marked effect on system stability regardless of 
discriminatory power of the feature being used.  
 

Figure 2: Variation of Cllrs by sampling training 
and test scores from pseudo-datasets (a), (b) and (c). 

 
 

 
Table 1: Cllr minimum, 1st quartile, median, 3rd 
quartile, maximum, IQR and OR of sets (a), (b) and 
(c) in experiment 1. 

 
 
 
 
 
 
 
 
 
 
Experiments 2 and 3 explore the effects found in 
Experiment 1 in more details, to identify whether the 
training or test data is more important.  
 
 
 

4.2.  Experiment 2 
 

Figure 3 shows the variation in Cllrs by sampling 
different sets of training scores in each replication. 
One predictable pattern emerges, namely that the 
further apart the distributions of SS and DS scores, 
the lower the Cllr mean and median. All three sets 
yielded the same Cllr IQR (Table 2), which indicates 
that variables with higher speaker-discriminatory 
power do not necessarily yield a higher system 
stability when varying the training speakers. 
However, more outliers are produced when the 
distributions of SS and DS scores are further apart 
from each other, which makes the overall Cllr range of 
set (c) higher than (a) and (b). 
 

Figure 3: Variation of Cllrs by sampling training 
scores from pseudo-datasets (a), (b) and (c). 

 
 

 
 

Table 2: Cllr minimum, 1st quartile, median, 3rd 
quartile, maximum, IQR and OR of sets (a), (b) and 
(c) in experiment 2.  

 
 
 
 
 
 
 
 
 
 
 
4.3.  Experiment 3 

 
Figure 4 shows variation in Cllrs when sampling 
different sets of test scores in each replication. The 
overall range and IQR of Cllrs in Experiment 3 yielded 
a different pattern from Experiment 2. The Cllrs of set 
(b) range from 0.1 to 0.36 (Table 3) and the IQR is 
0.08. These are higher than those of sets (a) and (c). 
Scores sampled from pseudo-dataset (c) yielded the 

Cllr (a) (b) (c) 
Min. 0.23 0.10 0.03 
1st Qu. 0.30 0.16 0.07 
Median 0.33 0.19 0.10 
3rd Qu. 0.37 0.22 0.12 
Max. 0.54 0.42 0.51 
IQR 0.07 0.06 0.05 
OR 0.31 0.32 0.48 

Cllr (a) (b) (c) 
Min. 0.30 0.17 0.08 
1st Qu. 0.30 0.17 0.08 
Median 0.3 0.17 0.09 
3rd Qu. 0.31 0.18 0.09 
Max. 0.33 0.25 0.29 
IQR 0.01 0.01 0.01 
OR 0.03 0.08 0.21 



lowest overall Cllr range (0.1) and IQR (0.03), which 
suggests that it is feasible to use the same LR-based 
FVC system for multiple FVC cases. However, a 
comparison between sets (a) and (b) shows a different 
pattern, suggesting that a variable with a higher 
speaker-discriminatory power does not always yield 
higher system stability if different test speakers are 
used.  
 
 

Table 3: Cllr minimum, 1st quartile, median, 3rd 
quartile, maximum, IQR and OR of sets (a), (b) and 
(c) in experiment 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Variation in Cllrs by sampling test scores. 
 

 
 

5. DISCUSSION 

The results from the three experiments showed that 
score sampling has different effects on system 
stability.  
     Experiment 1 shows that system accuracy is not 
necessarily positively correlated with system 
stability, because the further away the SS and DS 
distributions (lower EER) are, the more outliers the 
system yields.  
     Experiment 2 shows a similar pattern comparing 
to Experiment 1. The system stability in Experiment 
2 is much higher than that in Experiment 1, and 
Figure 3 suggests that varying training scores has a 
limited effect on system stability. However, this may 
also be due to the fact that when training scores are 
sampled, the same set of test scores are being used in 

each replication. Therefore, the effect of sampling 
variability is overall reduced, which in turn improves 
the system stability.  
     In Experiment 3, it was the same calibration 
coefficients (i.e. same set of training scores) used in 
each replication. The results suggest that sampling 
test scores has more effect on the system stability than 
sampling training scores. Set (c) yielded more outliers 
than sets (a) and (b), which suggests a low feasibility 
for using the same LR-based FVC system for multiple 
real cases even when the variables have a higher 
speaker-discriminatory power (lower EER). 
However, set (c) also yielded the lowest OR and IQR, 
which may suggest that the system starts to yield 
stable performance when a certain accuracy level is 
achieved, and a well-defined training data is used [8].  
    Potential solutions could be developed to deal with 
the system variability caused by score sampling. First, 
different calibration methods proposed in [18] might 
offer a solution to improve system stability. Second, 
the effect of score sampling on system stability can be 
explored for different types of distributions by taking 
skewness and kurtosis from real speech data into 
consideration [3]. Third, similar to [8], a well-defined 
training data set may be needed to improve the overall 
system stability.  

6. CONCLUSION 

The current study used simulated data to explore the 
effect of score sampling on system stability. The 
results reinforce the underlying uncertainty in data-
driven FVC studies. The results have a number of 
implications for both LR-based FVC and phonetic 
studies in general. Firstly, it is necessary to capture 
both system accuracy and stability rather than 
reporting one single LR value in LR-based FVC 
cases. Secondly, variability in source data causes the 
system performance to vary to different extents 
regardless of the speaker-discriminatory power of the 
variables being used; variables with higher speaker-
discriminatory power do not necessarily yield higher 
system stability. Thirdly, it is essential to replicate 
experiments multiple times. Otherwise, the results 
might be misleading if they are used as evidence, with 
potentially serious consequences for justice.  
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Cllr (a) (b) (c) 
Min. 0.24 0.10 0.06 
1st Qu. 0.31 0.15 0.08 
Median 0.33 0.19 0.09 
3rd Qu. 0.36 0.23 0.11 
Max. 0.41 0.36 0.16 
IQR 0.05 0.08 0.03 
OR 0.17 0.26 0.10 
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