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ABSTRACT

Speakers reduce segments to a greater degree when
they are more predictable and frequent. The out-
come of this probabilistic reduction varies cross-
linguistically—for example, /s/ is more predictable
and likely to reduce in Spanish than in English [10].
If probabilistic reduction reflects a speaker’s expec-
tations about language, what happens when there is
more than one language to contend with? This pa-
per reports on a corpus study of consonant reduc-
tion in Spanish-English bilingual speech. Given that
bilinguals’ languages influence one another, are con-
sonant duration patterns better accounted for when
languages are pooled together or kept separate? In
a comparison of two linear mixed effect models, fit
for pooled- and separate-lexicon models does not
significantly differ. More importantly, this study
largely fails to find evidence of segmental proba-
bilistic reduction, suggesting a fundamental differ-
ence in how probability operates in bilingual speech.
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1. INTRODUCTION

In bilingual speech production, there is a broad con-
sensus that languages influence each other regard-
less of dominance [7], and are activated regardless
of which is in use [18]. To this end, researchers are
concerned with how units (e.g. words, segments) are
stored, how speakers mitigate interference from the
language not in use [23], and how mutual influence
impacts production [13, 15]. This study addresses
segmental interference—specifically, how measures
of information (e.g. frequency, predictability, and
informativity) operate in probabilistic reduction for
bilingual speech. Probabilistic reduction for seg-
ments is of particular interest, because while lan-
guages may share similar segments, they are not
necessarily reduced in the same ways. In monolin-
gual speech, these cross-linguistic differences have
been accounted for with information content [9],
which sheds light on speaker knowledge and expec-

tations about language [16]. For bilinguals, it fol-
lows that probabilistic reduction would also provide
insight on knowledge and expectations about lan-
guage, as well as for how languages interact.

1.1. Probabilistic accounts of reduction

For various linguistic units, an increased probabil-
ity of occurrence corresponds with increased artic-
ulatory reduction, and has been widely used to ac-
count for variation in speech production [16]. Stud-
ies exploring the relationship between probability
and reduction are typically grounded in Information
Theory [25]. Information-theoretic accounts have
addressed variation in production for words [24],
morphemes [22], and segments [9]. Regardless of
the unit, the most common measure of reduction is
duration, where shorter duration corresponds to in-
creased reduction. While duration is not the only
choice [1], it is the most well understood [8, 20]. In
each of these cases, probability can be quantified in
with information-theoretic measures like frequency,
local predictability, and informativity [9, 16].

Frequency is a measure of how often a unit is
encountered. Words and segments with higher fre-
quencies are more likely to be reduced [9]. However,
while word frequency typically predicts word dura-
tion [24], it is an inconsistent predictor of segment
duration [9], as units within a word are not necessar-
ily uniformly affected [22]. Frequency, defined in
(1), is the probability of unit x.

(1) P(x)

Local predictability builds on frequency by in-
cluding context. For segments, context typically
comprises all (or some) of the preceding segments
in the word [9]. While this definition often produces
robust results [27], it is almost certainly inadequate
(see [22]). Local predictability, defined in (2), is the
negative log probability of unit x in context c.

(2) −log2P(x|c)

Informativity builds on local predictability, and
has been used to account for why some units are



more likely to reduce, even when they are locally un-
predictable [9, 24]. Informativity, defined in (3), is a
weighted average of local predictability for a unit x,
taking all possible contexts, c, into account.

(3) −ΣcP(c|x)log2P(x|c)

1.2. The present study

Information-theoretic measures are unique to spe-
cific languages. This point has been made effec-
tively by many researchers (e.g. [9, 16]), but only for
monolingual speech. Assuming a bilingual speech
is subject to parallel activation and mutual influ-
ence, what happens to probabilistic reduction? Are
predictability effects separate-lexicon in nature, and
tied to specific languages? Or pooled-lexicon, with
bilinguals drawing on all available source material?
These competing hypotheses are considered here in
the case of bilingual consonant reduction patterns.

2. METHODS

This corpus study comprises a comparison of two
linear mixed effects models—separate-lexicon and
pooled-lexicon. The models use the same sam-
ple, dependent variable, and structure, but vary
with respect to how the values for the segmental
information-theoretic measures are calculated.

2.1. The database

This study uses the Bangor Miami corpus [12],
which consists of conversational speech from
highly-proficient Spanish-English bilinguals resid-
ing in Miami, USA. Speakers range in age from
9–78 years (median: 29.5 years), and typically knew
each other. The corpus comprises 35 hours of
recordings, with 34 percent in Spanish. Speakers
conversed in various places, and many of the record-
ings are noisy. The corpus is transcribed orthograph-
ically by utterance (one main clause), with words
tagged for language and part-of-speech. The tran-
scriptions note unintelligible speech, disfluencies,
and non-speech sounds, but do not contain sub-word
annotations. As such, this study relies on transcrip-
tions from the CALLHOME Spanish Lexicon [14]
and Carnegie Mellon pronouncing dictionary [29].

2.2. Target segments

This study focuses on duration variation for word-
medial, intervocalic /f/, /s/, and /Ù/. If similar sounds
are assumed to be linked (despite non-identical pro-
ductions), Spanish and English substantially over-
lap. This assumption was not problematic in pre-

vious work on Spanish and English word-final sibi-
lants [6] or word-initial stops [13]. Another reason
for using these segments is that given their acoustic
characteristics, they are robust under forced align-
ment. For a corpus without sub-word annotations,
this increases tractability given time constraints.

2.3. Exclusionary criteria

Using the orthographic transcriptions and dictio-
nary pronunciations, utterances were considered
candidates if there was a target segment in either
language—7896 utterances fit this search criteria.
Utterances were excluded for code-switching (see
[13]), disfluencies [4] and the presence of unintel-
ligible speech. Targets were also excluded if they
occurred in a function word [3], or a repeated word
in the utterance [21]. For words with multiple tar-
get segments, all but one were randomly removed.
This sample was further reduced to files where seg-
ment boundaries could be reliably marked, given the
sub-optimal recording quality. As there were more
Spanish than English targets at this point, a random
sample was taken to match English, ensuring a min-
imum of five targets per speaker. The final sample
comprised 2052 target segments.

2.4. Duration measurements

The dependent variable was target segment duration.
Target utterances were extracted from the corpus
(stereo WAV files, sampling rate: 44.1 KHz), and
automatically transcribed with the Montreal Forced
Aligner, using pretrained acoustic models for both
languages [19]. Target segment boundaries in the
TextGrid annotations were hand-corrected in Praat
[5] by inspecting the wideband spectogram and
waveform, and supplemented by listening to the au-
dio. Segment onset was defined as the point where
high-frequency energy indicating frication first ap-
peared for /f/ and /s/, and as the intensity minimum
immediately following the preceding vowel for /Ù/.
Segment offset for all segments was defined as the
intensity minimum immediately before the onset of
periodicity for the following vowel. Figure 1 shows
the distribution of target segment duration.

2.5. Control predictors

Each target segment was coded for six control fixed
effect predictors. Language was a binary variable
with possible values Spanish and English. Mean
syllable duration—a gross measure of speech
rate—was calculated over the utterance (including
pauses), log-transformed, and centered. Word posi-



Figure 1: Duration is normally distributed, and is
similar across languages for each segment.

tion was the distance from the end of the utterance
in words, log-transformed, and centered. Segment
position was the distance from the end of the word
in segments, log-transformed, and centered. Diph-
thongs were always treated as two segments. Stress
precedes and stress follows were binary variables
with possible values True and False.

2.6. Information-theoretic predictors

Each target segment was coded for four information-
theoretic fixed effect predictors. Word frequency
is the number of times a word occurs in the corpus
[9]. As Spanish and English do not make up equal
halves of the corpus, relative word frequency for
each language was log-transformed and centered.
Segment frequency is the number of times a seg-
ment occurs in the corpus—relative values for each
language were log-transformed and centered. Local
predictability is the amount of information a par-
ticular segment has, given all preceding segments in
the word. Informativity is the amount of informa-
tion a segment typically has, given the above char-
acterization of local predictability.

For each model, the values for the segmental
information-theoretic predictors were calculated in
different ways. In the separate-lexicon model, each
target segment has a separate frequency and infor-
mativity value for each language, and local pre-
dictability was determined for each language, such
that even if the same context occurs in the other
language, the cross-language context was not con-
sidered. In the pooled-lexicon model, the converse
was true. Target segments shared frequency and in-
formativity values across languages, and local pre-
dictability included cross-language contexts.

2.7. Regression analysis

The goal of this analysis is to assess whether prob-
abilistic reduction operates according to a separate-
or pooled-lexicon model. Two linear mixed effects
models were fit to the same data with the lme4 R
package [2]. The models share the same struc-
ture, dependent variable, and fixed effects outlined
above. Also included were random intercepts for

speaker, and by-speaker random slopes for segment
frequency, local predictability, and informativity (as
in [9]). Given the number of predictors, and need to
limit model complexity, interaction terms were not
included. As it stands, the number of observations in
this study (n = 2052) is sufficient, following a con-
servative minimum of 50–100 per predictor [17].

3. RESULTS

Relative model fit can be assessed with the Akaike
Information Criterion (AIC). While the pooled-
lexicon model has a lower AIC value (separate:
19512.11, pooled: 19509.51, ∆ = 2.60), the differ-
ence is not significant. Note that in reporting overall
model fit, collinearity is not problematic [30].

The output of pooled-lexicon model is reported
here, as it fits the data better. The intercept was sig-
nificant (β = 125.76, SE = 7.84, t = 16.03, p <
2× 10−16), and the control fixed effects followed
expected patterns. Increased mean syllable dura-
tion (β = 19.03, SE = 1.46, t = 13.01, p < 2×
10−16) and following stress (β = 11.54, SE = 2.15,
t = 5.37, p < 8.63× 10−8) led to increased target
segment duration. Preceding stress trended in the
same direction, but was not significant (β = 2.14,
SE = 2.04, t = 1.05, p = 0.30). Word position
(β = −4.61, SE = 0.50, t = −9.19, p < 2×10−16)
and segment position (β = −6.40, SE = 1.25, t =
−5.10, p < 3.7×10−7) both led to decreased target
segment duration, as expected due to final lengthen-
ing effects. The only control fixed effect that quali-
tatively differed across models was language. Span-
ish indicates shorter segment duration in the pooled-
lexicon model (β = −5.16, SE = 1.81, t = −2.86,
p < 0.004), but not in the separate-lexicon model
(β =−2.40, SE = 1.99, t =−1.21, p = 0.23). Con-
trol fixed effect coefficients are depicted in Figure 2.

Figure 2: Control fixed effect coefficients and
95% CIs for both models. Positive estimates in-
dicate increased duration, and negative decreased.

Of the information-theoretic fixed effects, only
word frequency patterned as expected—an increase
in word frequency (β = −0.70, SE = 0.29, t =



−2.46, p < 0.02) led to a small decrease in segment
duration. Segment frequency, local predictability,
and informativity did not follow expected patterns.

Local predictability has a clear interpreta-
tion—there is no effect on segment duration (β =
0.07, SE = 0.36, t = 0.20, p = 0.84). The results
for segment frequency (β = −4.24, SE = 1.31, t =
−3.25, p < 0.001) and informativity (β = −7.12,
SE = 1.83, t = −3.90, p < 0.0002) exhibit strong
collinearity in both models (V IF > 3). While this
was not a problem for interpreting overall model fit
[30], it renders the collinear fixed effects uninter-
pretable. To assess if the estimates were biased by
collinearity, two checks were performed. First, the
zero-order correlation for segment frequency and in-
formativity with the dependent variable was com-
pared against the model estimates. There was a
change in sign for informativity (R = 0.018, β =
−7.12), which suggests bias. There was no sign
change for segment frequency (R = −0.035, β =
−4.24). This was consistent for both models. Sec-
ond, the model was refit twice, leaving out each
collinear predictor in turn. With segment frequency
removed, the effect size for informativity was re-
duced and no longer significant (β = −1.32, SE =
0.80, t = −1.65, p = 0.10). With informativity re-
moved, the effect for segment frequency changed
directions and was no longer significant (β = 0.32,
SE = 0.59, t = 0.54, p = 0.59). All other fixed ef-
fects were stable. This finding was consistent across
both models. These checks strongly suggest that the
significant negative effects for segment frequency
and informativity were artifacts of collinearity. The
estimates from the refit models likely better reflect
the actual effect, and as such, are depicted with word
frequency and local predictability in Figure 3.

Figure 3: Information-theoretic fixed effect coef-
ficients and 95% CIs for both models. Increased
word frequency corresponds to decreased dura-
tion. All other factors are not significant.

4. DISCUSSION

This study addresses how segmental probabilistic
reduction operates in the case of bilingual speech.
Two linear mixed effects models were fit to a subset

of utterances in the Bangor Miami corpus [12] and
compared against each other. Each model represents
a competing hypothesis about what information-
theoretic measures draw on—a separate- or pooled-
lexicon. As neither model gives a better fit, the far
more interesting outcome is that this study largely
fails to replicate basic monolingual findings for seg-
mental probabilistic reduction. This differs from
previous work showing effects for segment fre-
quency, local predictability [1, 27], and informa-
tivity [9]. It is important to highlight that previ-
ous work has modeled segment duration for a much
larger set of consonants [9], and this study focuses
on just three. While Cohen Priva [9] does not report
unique behavior for /f/, /s/, and /Ù/, it is nonetheless
possible that the results of this study follow from this
particular subset of consonants and their phonologi-
cal patterns in two languages.

Sample size (n = 2052) may be a limiting fac-
tor in this study, though given the model specified
and result, it does not seem likely. While Cohen
Priva and Jaeger [11] find an increased risk of spu-
rious effects for small sample sizes, the main risk
they report is finding a significant effect of seg-
ment frequency while failing to control for local pre-
dictability and informativity. They don’t consider
the outcome where all are included, but no effect
is found. In this light, and because the sample size
large enough for the complexity of the model [17],
it is worth entertaining the more interesting possi-
bility—bilingual speech is fundamentally different.
This could be an artifact of bilingualism, the spe-
cific languages involved, or a combination of both.
Recent work shows that the relative importance of
probabilistic measures varies by language [28], and
that defining context remains a major issue [26]. In
addition to the strictly local context used here, re-
searchers have observed effects from neighboring
words [22, 24], and farther [21]. A major challenge
going forward is to determine what aspects of con-
text affect bilingual speech. It is possible that con-
text dynamically shifts according the languages in
use and code-switching (see [13]), or as an effect
of recency and cumulative experience (see [7]). If
probabilistic measures vary by language (as in [28]),
context may serve as a modulating force.

While this study presents a null result, it high-
lights an important point—monolingual findings
cannot be simply applied to bilingual speech. This
study provides an important contribution towards
understanding how probabilistic reduction operates
in a new population, and in the process, treats bilin-
gualism as an interesting question rather than as a
complicating factor.
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