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ABSTRACT 

 
The present study investigated the extent to which 
variation along formant trajectory dimensions – 
considered both separately and simultaneously – 
manifests in the English diphthongs CHOICE, FACE, 
MOUTH, GOAT and PRICE.  The sources of variation 
were phonemic category, flanking consonants, 
speaker’s gender and speaker’s regional background. 
Formant trajectory dimensions were overall and time-
varying first (F1) and second (F2) formant trajectories 
as parameterised by their means and time-varying 
slopes and curvature using the discrete cosine 
transform. Phonemic category was robustly predicted 
by variation in the combination of F1 and F2 means 
and slopes, whereas flanking consonants were not. 
Gender was strongly predicted by variation in F1 and 
F2 means, but not in F1 and F2 time-varying aspects. 
Regional background emerged in the variation of both 
F1 and F2 means, slopes and curvature to roughly 
similar extents. Given the acoustic 
multidimensionality of vowels, variation is most 
appropriately viewed with a multivariate approach. 
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1. INTRODUCTION 

Vowel segments, like many phonetic phenomena, are 
acoustically multidimensional. That is, an individual 
vowel token may differ from others along several 
acoustic dimensions simultaneously, e.g., duration, 
fundamental frequency as well as aspects of first (F1) 
and second (F2) formant trajectories. Although one 
dimension may be more informative than another in 
speech perception [4], several dimensions are 
nonetheless used by listeners at the same time. Thus, 
should acoustic dimensions be examined 
independently when their values represent a single 
phonetic unit, such as a vowel token? This question is 
pertinent for variation, as differences on one 
dimension may be related to those on another [9].  

Characterising time-varying formant trajectories 
relies on sampling frequencies at discrete points 
throughout the course of a vowel. Using this 
information in conjunction with explanatory 

variables, e.g., about the speakers themselves, is a 
technical challenge, and it is a matter of debate how 
best to represent formant trajectories. Ultimately, a 
balance needs to be struck between preserving 
acoustic detail without sacrificing the utility of 
explanatory variables that may give rise to variation.  

 “Ad-hoc” representations of formant trajectories, 
e.g., generalised additive models [11], involve fitting 
curves to the sampled formant frequencies over time. 
They have the advantage of not forcing a 
parameterisation on trajectory shapes. Unfortunately, 
they offer limited scope – for the time being, at least 
– for modelling trajectories along with multiple and 
often related and/or interacting explanatory variables. 
Furthermore, the “ad-hoc” parameters of formant 
trajectories do not generalise across different datasets. 

“Predefined” representations of formant 
trajectories, on the other hand, involve fitting curves 
with known parameters. In its simplest form, a 
formant sampled at vowel onset and offset represents 
a linear trajectory [7]. Despite the apparent crudeness, 
it is remarkably effective for classifying vowels 
according to phonemic categories, and such basic 
time-varying spectral information is perceptually 
very relevant, especially for English [2, 13, 14]. More 
intricate “predefined” representations involve a 
greater number of samples. A popular method is the 
discrete cosine transform (DCT) whose curve 
parameterisation is based on a trajectory’s mean plus 
½ cosine multiples, each with amplitudes 
representing deviations from this mean [6]. A formant 
trajectory is represented by a set of DCT coefficients 
(DCTCs): the 0th is the mean across samples, the 1st is 
a ½ cosine (the slope’s magnitude and direction) and 
the 2nd is a full cosine (overall curvature). Further 
DCTCs represent more complex shapes.  

Importantly, DCT representations can be readily 
used in a plethora of linear modelling procedures 
which permit complex factorial and/or multivariate 
designs, overcoming some shortcomings of “ad-hoc” 
approaches. Effectively representing formant 
trajectories along these dimensions has been 
demonstrated for variation between phonemic vowel 
categories and also for explaining variation relating to 
speakers’ regional background and gender [3, 12]. 

The present study investigates the extent to which 
four potential sources of variation in English 



diphthongs manifest along several dimensions, 
namely log-duration, overall (i.e., 0th DCTCs) and 
time-varying F1 and F2 frequencies (i.e., 1st DCTCs 
and 2nd DCTCs). The sources of variation are (1) 
phonemic category, (2) flanking consonants, (3) 
speaker’s gender and (4) speaker’s regional 
background. First, we examine how variation along 
these formant trajectory dimensions – when 
considered separately and simultaneously – can be 
attributed to the four potential sources. Second, we 
show why it is advisable to consider variation along 
all acoustic dimensions of interest at the same time. 

2. METHOD 

The diphthong tokens came from corpora reported in 
[3] and [12]. 55 speakers aged between 18 and 30 at 
the time of recording participated and they had 
different regional backgrounds: 19 (10 female) were 
from Northern England (N.Eng), 17 (10 female) were 
from Southern England (S.Eng) and 19 (12 female) 
were from Australia (Aus). Each speaker produced 

the syllables /sVs/, /fVf/, /ɡVk/, /dVt/ and /bVp/ 
where /V/ is one of the five English closing 
diphthongs CHOICE, FACE, GOAT, MOUTH and PRICE 
(according to Wells’ [10] Lexical Sets). N.Eng and 
S.Eng speakers produced each syllable in a sentence 
twice, while Aus speakers produced each syllable 
once in isolation and once in the same sentence frame 
used by N.Eng and S.Eng speakers. This yielded two 
repetitions of each unique syllable per speaker. Using 
the default settings for male and female speakers in 
Praat [1], F1 and F2 frequencies were sampled from 
19 equally spaced intervals in the central 60% of each 
vowel token in order to remove obvious transitions 
with flanking consonants. F1 and F2 Hz values were 
converted to ERB and transformed using the DCT. 

3. RESULTS 

Plots of F1 and F2 trajectory means (across the 55 
speakers’ pools of tokens) are displayed in Figure 1. 
All analyses were carried out in R [8] using the 
MCMCglmm [5] package which fits generalized 

Figure 1: Mean F1 and F2 trajectories in central 60% portions. 
 

 



linear mixed-effects models employing Markov chain 
Monte Carlo (MCMC) sampling for Bayesian 
statistics. For every model, weak priors were set for 
the fixed-effects residuals and degree of belief 
parameter was set to the lowest bound for fixed and 
random effects. Single Markov chains sampled from 
the posterior distribution for each model; the initial 
10,000 iterations were discarded and a further 
100,000 iterations were run and then thinned, leaving 
1,000 samples per model.  

3.1. Formant trajectory variation as a predictor  

Mixed-effects multinomial logistic regressions were 
run with each potential source of variation as the 
categorical dependent variable. For each source, we 
ran five models with different combinations of 
standardized F1 and F2 DCTCs as predictors; 
standardized log-duration was included as a control 
variable in all models because we were interested in 
variation specifically along acoustic dimensions 
relating to F1 and F2. To account for token 
imbalances (e.g., 58% of tokens were produced by 
female speakers), which might affect the likelihood 
of a member of a particular category occurring, 
random intercepts were added for item which covered 
all categorical variables other than the dependent 
variable and whether syllables were said in isolation 
or in a sentence. To assess how well the four sources 
of variation can be predicted by different formant 
trajectory dimensions (as represented by DCTCs) 
separately as well as simultaneously, we report 
predicted probabilities of correct classifications 
averaged across tokens in Table 1. Probabilities of 
incorrect classifications (confusions) are not reported. 

For phonemic category, both 0th and 1st DCTCs 
were good predictors, whereas 2nd DCTC performed 
worse. Most striking is that 0th and 1st DCTCs 
together resulted in accurate separation, which is 
remarkable given that there are different syllables 
produced by 55 speakers of different regional 
backgrounds and genders. Adding 2nd DCTCs to the 
combination did not improve classification.  

Predictions of flanking consonants were poor 
overall, indicating that this source of variation does 
not manifest consistently in F1 and F2 trajectories 
within the central 60% portion of diphthong tokens.  

For gender, classification is substantially above 
chance with only 0th DCTCs, but around chance with 
1st or 2nd DCTCs, and classification does not improve 
when these latter measures are combined with 0th 
DCTCs. Interestingly, females’ diphthongs were 
classified more accurately, suggesting less between-
speaker variation in females’ use of time-varying 
formant dimensions compared to those of males. 

For regional background, classifications were 
reasonably above chance with 0th, 1st or 2nd DCTCs 
separately. There was not much improvement with 
both overall and time-varying trajectory dimensions 
together. Overall, these results indicate a fair amount 
of overlap in variation across the three varieties. 
Nevertheless, Aus tokens were much more accurately 
identified than the other two varieties, suggesting 
formant trajectory variation in Aus tokens is more 
distinct from that found in N.Eng and S.Eng tokens.  

In summary, all sources of variation, except for 
flanking consonants, can be predicted above chance 
levels based on overall (0th DCTCs) or time-varying 
(1st and 2nd DCTCs) F1 and F2 trajectory dimensions. 
Importantly, using these two formant dimensions is 
useful only for predicting phonemic category and is 
negligible for flanking consonants, gender or regional 
background. This is likely because the acoustic 
manifestations of these sources of variation co-vary, 
e.g., with phonemic category (cf., Figure 1). 
 

Table 1: Probabilities of correct classifications by 
phonemic category (chance = 0.20), flanking 
consonants (chance = 0.20), gender (chance = 0.50) 
and regional background (chance = 0.33) according 
to different combinations of DCTCs as predictors. 
 

Phonemic 
category 

0th 1st 2nd  0th, 
1st 

0th, 1st, 
2nd 

CHOICE 0.59 0.86 0.23 0.95 0.95 
FACE 0.89 0.50 0.32 0.90 0.90 
GOAT 0.47 0.45 0.31 0.80 0.81 

MOUTH 0.52 0.80 0.39 0.92 0.93 
PRICE 0.47 0.63 0.37 0.88 0.89 
Mean 0.59 0.65 0.32 0.89 0.89 

Flanking 
consonants 

0th 1st 2nd  0th, 
1st 

0th, 1st, 
2nd 

/sVs/ 0.21 0.22 0.21 0.22 0.23 
/fVf/ 0.24 0.24 0.24 0.26 0.24 
/ɡVk/ 0.21 0.23 0.23 0.24 0.37 
/dVt/ 0.23 0.24 0.26 0.25 0.20 
/bVp/ 0.18 0.20 0.20 0.21 0.19 
Mean 0.22 0.23 0.23 0.24 0.25 

Gender 0th 1st 2nd  0th, 
1st 

0th, 1st, 
2nd 

Female 0.90 0.62 0.62 0.90 0.91 
Male 0.86 0.45 0.45 0.86 0.87 
Mean 0.88 0.55 0.55 0.89 0.89 

Regional 
background 

0th 1st 2nd  0th, 
1st 

0th, 1st, 
2nd 

N.Eng 0.42 0.50 0.41 0.50 0.50 
S.Eng 0.46 0.43 0.38 0.53 0.52 
Aus 0.72 0.68 0.62 0.77 0.77 

Mean 0.54 0.54 0.48 0.61 0.61 



3.2 Predicting formant trajectory variation 

The previous section showed that variation 
simultaneously in the F1 and F2 0th and 1st DCTCs 
performed best overall at predicting membership of 
phonemic category, regional background or gender 
because also including variation from F1 and F2 2nd 
DCTCs did not improve performance. Thus, it seems 
reasonable to define formant trajectories along these 
most informative dimensions at the same time.  

Typically, variation is studied in the reverse way, 
namely, explanatory variables are used to predict 
acoustic variation – often separately for more than 
one dependent variable, even though these all 
describe the same tokens. We illustrate that failing to 
account for acoustic multidimensionality may limit 
explanations of acoustic variation. We model 
variation in the five diphthongs using a multivariate 
mixed-effects linear regression. Phonemic category, 
regional background and gender served as interacting 
predictors and log-duration, F1 and F2 0th and 1st 
DCTCs were the dependent variables. Also entered 
were by-speaker random intercepts and slopes for 
phonemic category, flanking consonants and whether 
syllables were said in isolation or a sentence. 
Crucially, a covariance matrix was estimated for the 
dependent variables at the level of tokens. 

 
Table 2: Covariance matrix of dependent variables 
at the level of tokens (expressed as correlations of 
posterior medians) from a mixed-effects 
multivariate regression model. Significant 
correlations – those with 95% credible intervals (in 
brackets) not crossing zero – are displayed in bold. 

 

 
F1 F2 

0th 1st 0th 1st 

F1 1st 
–0.17 
(–0.20,  
–0.13) 

   

F2 

0th 
–0.09  
(–0.12,  
–0.04) 

0.01  
(–0.02, 
0.05) 

  

1st 
0.00  
(–0.04, 
0.03) 

–0.02 
(–0.05, 
0.02) 

–0.05 
(–0.09,  
–0.02) 

 

Log-
duration 

–0.19  
(–0.23,  
–0.15) 

0.27 
(0.22, 
0.31) 

–0.06 
(–0.11,  
–0.01) 

–0.14 
(–0.18,  
–0.09) 

 
Table 2 presents the covariance matrix from this 
model. It is clear there are some modest correlations, 
suggesting that some variation is indeed shared across 
dimensions at the level of tokens. Most striking is that 
higher log-duration values are significantly correlated 
with higher F1 1st DCTC values, suggesting that 
tokens with longer durations also display greater 
falling F1 trajectory change. A further example is that 
tokens with longer log-durations show lower F1 0th 

DCTCs, i.e., longer durations are correlated with 
lower F1 means. Additionally, tokens with higher F1 
1st DCTCs exhibit lower F1 0th DCTCs, indicating 
that greater falling F1 trajectories are associated with 
lower F1 trajectory means. 

4. DISCUSSION AND CONCLUSION 

The present study sought to explain four potential 
sources of variation – phonemic category, flanking 
consonants, gender and regional background – in the 
F1 and F2 trajectories of the five English diphthongs 

CHOICE, FACE, GOAT, MOUTH and PRICE. The acoustic 
multidimensionality of vowels was also focused on.  

The main findings are that F1 and F2 trajectory 
variation contributes most strongly to phonemic 
category. Importantly, it is the simultaneous variation 
in overall and time-varying trajectory dimensions 
which leads to the most successful predictions of 
phonemic category. On the other hand, gender 
manifested strongly in variation of formant means, 
reflecting expected differences in vocal tract sizes, 
but made little contribution to variation in the time-
varying dimensions of formant trajectories. Regional 
background was predicted with moderate accuracy 
and was apparent to roughly equal extents in overall 
and time-varying aspects of trajectories, though both 
formant dimensions together did not result in large 
improvements. Flanking consonants were poorly 
predicted, suggesting that their acoustic influence 
cannot be captured well in the central 60% portion. 

It has been shown that using DCTCs clearly 
extends to capturing formant trajectory variation 
other than phonemic category. In line with [9], 
variation in 2nd DCTCs – corresponding to a formant 
trajectory’s curvature – predicted phonemic category 
poorly and did not improve classification 
performance in combination with other dimensions of 
formant trajectory shapes. However, 2nd DCTCs did 
perform just as well (or poorly) as 1st DCTCs – 
corresponding to a formant trajectory’s slope – for 
predicting other potential sources of variation. 
Nevertheless, 1st and 2nd DCTCs together did not 
result in improvements, suggesting two time-varying 
dimensions at the same time are perhaps redundant. 

Finally, the amenability of DCTCs in established 
linear modelling techniques is noteworthy. Variation 
in different formants, including aspects of their time-
varying trajectories, along with variation in vowel 
duration, can only be examined simultaneously in 
multivariate analytical approaches. In this way, the 
manifestation of different explanatory variables can 
be more accurately modelled on relevant acoustic 
dimensions, thereby better revealing the rich 
structures underlying phonetic variation. 
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