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ABSTRACT

We present a neural-based approach to the detection
of pronunciation errors in non-native speech, which
enables feature-based user feedback in a computer-
assisted pronunciation training scenario. Error di-
agnoses that make reference to phonological classes
provide the user with detailed articulatory informa-
tion, rather than just pointing out mispronounced
segments or words.

Several phonological classifiers are trained on raw
spectrograms of sounds in isolation and in local
phonetic context that are extracted from native En-
glish utterances. The models are then used to clas-
sify non-native speech segments along distinctive
phonological categories purely on the basis of vis-
ible spectrogram patterns.
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1. MOTIVATION

The popularity of English as lingua franca makes
foreign language competence indispensable. In
secondary schools in Germany, English is an inte-
gral part of the foreign language classroom, with
approximately 87% of students receiving formal
instruction in English in 2014 [23]. However, the
success of second language acquisition depends
on developmental, environmental and individual
factors, leading to varying levels of proficiency
throughout and following school education [4].
German native speakers who spend time abroad
in exchange programs, complete an international
degree or start their career in a globally oriented
company might face the challenge of having to
improve their English skills autonomously. On
top of lexical diversity and grammatical adequacy,
appropriate pronunciation contributes to a speaker’s
credibility [13], career chances [16], self-confidence
and sense of belonging in a foreign language envi-
ronment [22]. As opposed to that, strong German

accents can be seen as unpleasant and unfriendly
[14] or even as unattractive [9].

Existing tools such as NativeAccent or
Duolingo make use of speech recognition and
provide feedback in terms of instructions, video
material of facial movements, or pointers to the
erroneous item [10][26]. Transparent Language,
as opposed to that, ‘compares’ the recorded user
voice to a native speaker’s recording and shows
the waveforms for comparison [25]. A different
approach is taken by ReLANpro BYOLL, in which
users can upload their recordings to a cloud learning
server and receive feedback from instructors [5].
Our system differs from these approaches mainly
in its use of spectrogram-based classification on the
one hand and the output of detailed phonological di-
agnoses on the other hand, providing more specific
feedback.

This paper presents the use of neural classification
models, which are powerful in pattern recognition,
to detect pronunciation errors in non-native speech.
Speech spectrograms have previously been used in
neural speech emotion recognition [20][29][30], as
well as language identification [17] and pronuncia-
tion pathology detection [2] using Support Vector
Machines. We show that this representation can also
be used in the detection of erroneous segments in
non-native speech. At its core, the model presented
here learns to classify pronunciation errors on a seg-
mental level, based solely on information visible in
the segment’s spectrogram. A convolutional neural
network (CNN) is trained to recognize phonological
categories from spectral representations, thereby
revealing not only erroneous segments, but also the
erroneous characteristic, as for example the place of
articulation. As a result, discrepancies between the
model output and the intended sound can be used to
provide direct, applicable feedback to the user.

While neural networks work exceedingly well,
they lack explanatory power, in the sense that it is
not known which visual patterns are attended to.
In this paper, we show that the model is capable



Table 1: Sounds of interest and potential confu-
sions.

Sound Confusions Sound Confusions
/æ/ [E], ... /b/ [p], ...
/D/ [z], [d], ... /d/ [t], ...
/T/ [s], [t], ... /g/ [k], ...
/w/ [v], ... /v/ [f], ...

/z/ [s], ...

of making pronunciation adequacy judgments that
are comprehensible and useful from a linguistic
perspective, underlining the attractiveness of neural
networks despite the black-box problem.

2. ARCHITECTURE

The entire pipeline is shown in Figure 1. The ap-
proach takes native and non-native spectrograms on
two contextual levels as input. The native English
segment spectrograms serve as training data for sev-
eral phonological classifiers, which can then be used
to detect potentially erroneous features in non-native
spectrograms.

Figure 1: Pronunciation error detection pipeline.

2.1. Data and sounds of interest

To evaluate the usefulness of the model’s predic-
tions, they must be compared against a gold stan-
dard, indicating whether the sound was pronounced
correctly or, if it was mispronounced, what was said
instead. As it is not feasible to hand-label the entire
non-native data set on a phone level, Table 1 speci-
fies a set of sounds that are found to be particularly
challenging for native German learners of English,
as well as frequent confusions [1][9][21][22]. Due
to the contrastive nature of sounds, errors can lead to
deficits in comprehensibility, as for example in the
lack of a distinction between <think> and <sink>
or <bad> and <bed>.

We use speech data from the Speech Accent
Archive [27], which is a platform to which volun-
teers can upload their reading of a standardized En-
glish paragraph. The text is designed to contain
all sounds of English, as well as a few challenging
sound combinations. The archive features record-

ings from over 300 native language backgrounds.
As non-native speech corpus, we use 36 recordings
provided by native speakers of German (22 female,
14 male). Since the transcriptions provided by the
Speech Accent Archive lack time alignments and
use narrow annotations that mismatch the phonemic
output of our system, we decided to gold label the
non-native utterances ourselves. In the process, the
first author of the paper listened to each interval that
was identified as a sound of interest in the alignment,
and labeled it with the perceived sound. This allows
us to evaluate how well the model detects actual pro-
nunciation errors. To train the classifiers, the record-
ings of 102 native English speakers are used (58 fe-
male, 44 male).

2.2. Spectrogram generation

Our classification system relies on the availability
of phone-based speech segments. To that end, the
data from the Speech Accent Archive must be time-
aligned with their transcription. This task can be
accomplished with the acoustic model of an Auto-
matic Speech Recognition (ASR) System, which, in
the scenario presented here, where the spoken text is
known, can be used to find phone boundaries. ASR
performance suffers when dealing with non-native
speech [6][24][28][31], which also means that seg-
ment boundaries are not necessarily perfect or exact.
However, the envisioned application must segment
the user’s speech ad hoc, meaning that noisy seg-
ment boundaries represent an authentic, real-world
scenario. We show that the model performs well de-
spite this potential weakness.

The ASR toolkit of choice is Kaldi [18]. The
speech recognizer is trained on the TED-LIUM 3
corpus, which contains 452 hours of transcribed
speech data from 2028 unique speakers [8]. It fea-
tures a triphone HMM-GMM acoustic model with
speaker-adaptive training. The alignment process
results in Praat TextGrids that contain phone-based
segment boundaries [3]. Praat is then used to cre-
ate a visible spectrogram for each segment. We use
a maximum frequency of 8kHz, a Gaussian window
of 5 milliseconds length, a dynamic range of 70dB,
and autoscaling to ensure optimal visibility of spec-
tral patterns. We further explore two segmentation
variants: one in which the sound is segmented in
isolation and one in which the sound is segmented
along with the preceding and the following inter-
val. The latter allows the model to access local pho-
netic context, which can be helpful in the face of
co-articulation effects and prominent acoustic tran-
sitions, such as the lowering of the third formant in
rhotacized vowels [11][15]. Additionally, the inclu-



sion of the preceding and following interval is ex-
pected to attenuate the noisy alignment problem.

2.3. Training

The classification of phonological features based on
spectrograms is done by a Convolutional Neural
Network (CNN), which is particularly suitable for
image recognition. We construct a LeNet which fea-
tures two convolutional layers in Keras [7][12][19].
The first layer learns 20 filters of size 5×5, fol-
lowed by a ReLU activation function and 2×2 max-
pooling. The second layer learns 50 filters of size
5×5, again followed by ReLU activation and 2×2
max-pooling. The output is flattened and fed into
a fully-connected layer with 500 nodes and ReLU
activation, followed by a last fully-connected layer
with softmax activation. Each model is trained with
the Adam optimization algorithm for 25 epochs.
The learning rate is 0.001 and the batch size is 32.
Before being fed to the model, all spectrograms are
resized to 28×28 pixels. Since we find that the usage
of input images of size 64×64 and 128×128 pixels
does not increase accuracy while drastically increas-
ing training time, we assume that the relatively small
size of 28×28 pixels is sufficient for the model.

The model outputs a probability distribution over
the respective classes of a category, meaning that
one model is trained for each phonological category.
If a segment is classified as vowel in the first step
(classifier Class), it is further classified along the
parameters of height, fronting, rounding and tense-
ness. Conversely, if a segment is classified as con-
sonant, it is further classified along its place of artic-
ulation, manner of articulation, and voicing status.
The number of classes thereby depends on the cat-
egory. In total, eight models are trained five times
with random initialization. 25% of the native En-
glish spectrograms thereby serve as test data. The
accuracy of each model is averaged over all five runs
and given in Table 2. Categories are listed with the
respective number of classes in parentheses.

The best and worst result for each context level
are boldfaced. When considering sounds in isola-
tion, apparently the easiest parameter to detect is the
major class. This observation coincides with the fact
that the prominent formant structure of vowels is
visibly different from the spectral signature of most
consonants, which display patterns such as noise or
bursts. The lower performance on major class when
considering sounds in context could be explained by
the fact that the model is confronted with the acous-
tic signature of several segments, with vowels and
consonants interspersed. In contrast, the increased
performance in detecting lip rounding when consid-

Table 2: Accuracy of classifiers on the test set,
using sound spectrograms in isolation and in con-
text. ± indicates standard deviation.

ISOLATION CONTEXT
CATEGORY Acc % Acc %
Class (2) 89.34 ±0.5 86.04 ±0.7
Fronting (4) 70.35 ±2.9 77.28 ±1.0
Height (5) 64.19 ±0.5 71.59 ±1.3
Rounding (2) 86.00 ±0.4 86.12 ±1.6
Tenseness (2) 76.33 ±1.0 74.81 ±1.7
Place (7) 68.78 ±0.4 72.25 ±1.6
Manner (6) 74.06 ±0.9 75.11 ±0.9
Voicing (2) 83.18 ±0.5 81.07 ±1.4

ering sounds in context coincides with the fact that
the second and the third formant tend to be lowered
in a rounded vowel [11], which might be enhanced
by the visibility of local transitions. On both context
levels, the vowel height classifier performs worst.
One potential explanation might be that the first for-
mant, which correlates with vowel height, could be
displayed more or less conflated with the fundamen-
tal frequency, causing the classifier to mistake the
second formant as first formant in such cases.

The performance of the various models in Table 2
provides important insight into the functionality of
the system. Even though neural models suffer from
the black-box problem, meaning that users do not
know which patterns in the image are attended to,
the model outlined in this paper is capable of mak-
ing judgments that are linguistically justifiable.

In order to evaluate whether the spectrogram-
based approach offers an advantage over more care-
fully extracted features, we compute 13 MFCC
features for each sound instance, paint the corre-
sponding values over time in Praat, and use the re-
sulting images to train the model. Interestingly,
the spectrogram-based models outperform MFCC-
based models by 3.4% in the isolated scenario and
5.6% in the context scenario on average. To test
the impact of the number of features, we re-train
the model on images based on 24 MFCC features.
The difference in performance to the spectrogram-
based models even increases to 6.9% in the isolated
scenario and 9.4% in the context scenario on aver-
age, which supports the hypothesis that the system
benefits from patterns present in raw spectrograms
without explicit feature extraction. The accuracy
of MFCC-based models for each category, using 13
features, is given in Table 3, averaged over five runs.



Table 3: Accuracy of classifiers on the test set,
using MFCC-based representations of sounds in
isolation and in context. ± indicates standard de-
viation.

ISOLATION CONTEXT
CATEGORY Acc % Acc %
Class 83.34 ±1.8 83.14 ±1.2
Fronting 69.26 ±0.5 72.91 ±1.4
Height 65.27 ±1.1 65.75 ±2.0
Rounding 87.85 ±0.4 85.47 ±0.6
Tenseness 75.10 ±1.4 69.96 ±1.2
Place 61.00 ±0.7 62.04 ±0.9
Manner 64.36 ±1.2 63.29 ±0.7
Voicing 78.76 ±0.7 76.93 ±1.7

2.4. Diagnosis

Classification is done by feeding the spectrograms
extracted from 36 native German speakers of En-
glish to the phonological classifiers described in sec-
tion 2.3. For each category, the best model is used.
The combined output of all models allows us to
uniquely identify the sound that is recognized. The
recognized sound is then compared to the gold label
on the one hand, which specifies the actually real-
ized sound, and the target sound on the other hand,
which conforms to the canonical pronunciation of a
word. This three-way comparison leads to five sce-
narios, exemplified on the sound /D/ in Table 4. In
all cases, /D/ is the target realization, as for example
in the word <brother>.

Table 4: Evaluation scenarios.

Recognition Gold Target
True positive (TP) [D] [D] /D/
True negative (TN) [d] [d] /D/
False positive (FP) [D] [d] /D/
False negative (FN) [d] [D] /D/

Ambiguous (A) [z] [d] /D/

True positives, true negatives and ambiguous sce-
narios are particularly interesting. While true pos-
itives can be seen as correctly pronounced sounds,
true negatives can be seen as mispronunciations. In
both cases, the model is capable of predicting the
sound exactly. Ambiguous cases are interesting in
so far that they indicate a mispronunciation as well,
however, as opposed to true negatives, there is no
agreement on what was said instead. Since false
positives and false negatives denote a disagreement
between the annotator and the model with respect to
pronunciation accuracy itself, no adequate response
to such cases is currently possible.

3. RESULTS

Diagnosis on non-native speech segments is done
separately for segment spectrograms in isolation and
in context. The proportion of the five evaluation sce-
narios is shown in Table 5.

Table 5: Results for each evaluation scenario, us-
ing the best model for each category.

Isolation % Context %
TP 18.40 TP 22.63
TN 10.50 TN 6.44
FP 14.97 FP 18.11
FN 26.93 FN 21.65
A 29.19 A 31.17

The model is right in detecting whether a sound
is pronounced correctly or not in 58.09% of cases
in the isolated scenario (sensitivity: 40.59%, speci-
ficity: 72.61%), and in 60.24% of cases in the
context scenario (sensitivity: 51.11%, specificity:
67.50%), counting ambiguous cases as correctly lo-
calized pronunciation errors.

4. DISCUSSION AND OUTLOOK

We present a pipeline that is capable of judging the
pronunciation accuracy of German native speakers
of English, based on neural image classification on
spectrograms that display sounds in isolation or in
local context. The model’s judgment on the cor-
rect or incorrect pronunciation of a sound is appro-
priate in roughly 60% of cases, enabling relatively
reliable, feature-oriented diagnoses. Future studies
will further assess the pedagogical value of this type
of feedback. Furthermore, even though it is not
known which characteristics or patterns in the im-
age are learned exactly, the model’s decisions are
comprehensible and useful from a linguistic view-
point. Improved alignment quality and the consulta-
tion of a second annotator, as well as a comparison
to the transcriptions provided by the Speech Accent
Archive are expected to increase the confidence of
pronunciation accuracy judgments even more.
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