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ABSTRACT 

 

The aim of the study was to conduct automatic 

phoneme identification from articulatory data that 

accompanied the production of these phonemes in 

continuous speech. The articulatory data were 

obtained from 2 electropalatographic systems, 

Palatometer by Complete Speech and Linguagraph 

by Rose-Medical. Palatometer was used with the 

artificial palate containing 124 contact sensors in a 

grid layout, including 2 sensors monitoring the lip 

contact. The palate included a vacuum-thermoformed 

flexible printed circuit. Linguagraph was used with 

the acrylic artificial palate designed and developed 

for the purpose of this study, containing 62 electrodes 

in anatomical layout. Palatometer was used by one 

native of General American and Linguagraph by one 

native of General British, each reading 140 

phonetically balanced sentences that included 

Harvard Sentences and TIMIT prompts. The EPG 

data were parametrised into dimensionality reduction 

indexes, which were analysed by means of linear 

discriminant analysis and a probabilistic neural 

network. The results of classifications are discussed. 
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1. INTRODUCTION 

The concept of phoneme recognition refers to the 

identification of phonemes underlying an utterance 

without any reference to the language model at the 

word level or to a pronunciation dictionary.  

Phoneme recognition from articulatory clues has 

mainly been used to improve predictions of missing 

information in the acoustic signal in robust automatic 

speech recognition and in the development of silent 

speech interfaces. Articulatory data have mainly been 

derived from one of three sources: acoustic-

articulatory transformations using inverse mapping, 

classification scores for pseudo-articulatory features 

and direct physical measurements [10]. As the source 

of direct physical measurements, a wide range of 

techniques have been used, including X-ray filming 

[1], EGG, EMA and EPG [21] and EMA alone [7]. In 

all of the studies in which articulatory data were 

obtained from EPG, the palates with the contact 

sensor layout normalized for between-speaker 

anatomical differences were used. 

In this paper, we report on one aspect of a larger 

project5, whose aims include: 

 testing experimentally whether teaching the 

pronunciation of English consonants and 

consonant clusters to Polish learners by means of 

direct visual feedback based on EPG information 

is more effective than a comparable method 

without EPG; 

 conducting a systematic comparative analysis of 

differences between Polish and English with 

respect to articulatory correlates of distinctive 

features of the phonemes of the two languages; 

 collecting an articulatory database that could be 

used to train robust automatic speech recognition 

systems and silent speech interfaces. 

The last two aims required that we chose the type of 

the EPG system that would allow for the 

minimization of between-speaker articulatory 

variance in comparable pronunciations and that the 

selected system allows as reliable mapping of 

articulatory to acoustic distinctive features as it is 

possible considering the fact that the similar sounds 

can be created by a single speaker using a range of 

different articulatory gestures [15]. 

In the present report we use EPG articulatory data 

for phoneme recognition with the assumption that it 

provides an effective practical test of the quality of 

mapping of articulatory to acoustic distinctive 

features. We also compare the phoneme recognition 

rates obtained from two EPG systems and we 

describe the design and performance of a new 

artificial palate developed for the purpose of the 

project. The present paper is a continuation of the 

work presented in [11]. 

2. GRID AND ANATOMICAL LAYOUT OF 

CONTACT SENSORS 

There major two approaches to laying out contact 

sensors on an EPG palate include a grid layout where  
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each contact is positioned by a fixed distance from the 

neighbouring contacts and a normalized anatomical 

layout where the number of contacts does not vary 

and each contact is aligned with anatomical 

landmarks [23]. The two systems selected for this 

study were representative of both approaches: 

 Linguagraph by Rose-Medical Ltd. [9] with the 

palate that has the normalized anatomical 

electrode layout, and 

 Palatometer by Complete Speech [2] with the 

palate that has the grid layout of electrodes. 

For the purpose of this study, the Linguagraph 

multiplexer was used with the normalized anatomical 

palate of a new design intended to make the palate 

thinner and more natural to speak with. The 

Palatometer multiplexer was used with the original 

Complete Speech grid layout palate. 

The major advantage of the normalized 

anatomical layout is that a given contact sensor 

position for one speaker can be compared like-for-

like with that of another speaker to a much greater 

degree than in the grid layout palate. In the grid 

layout, speaker palates that are wider, longer or more 

arched require more contacts to cover the whole 

palatal surface than in the normalized anatomical 

layout. This results in low between-speaker 

comparability of patterns that accompany the same 

pronunciations [22]. Phonetic distinctive features 

induced from grid layout articulatory data of one 

speaker would therefore be difficult to generalize to 

other speakers. 

 
Table 1: Features of Linguagraph, Palatometer 

and Original palate 
 

  Linguagraph Palatometer Original 

layout  anatomical grid anatomical 

sensor 

position vs. 

anatomy fixed variable fixed 

sensor-to-

sensor 

position variable fixed variable 

between-

speaker 

comparability high low high 

average palate 

thickness on 

all electrodes 

1.5-2.5mm 

M=2.45 σ=.49 ~.5mm 

1.7-3.4mm 

M=2.10 

σ=.53 

materials  

used acrylic 

PET-G,  

polyimide acrylic 

durability high average high 

number of 

electrodes 62 124 62 

production manual automatic manual 

On the other hand, one of major disadvantages of 

normalized anatomical layout palates is that they are 

relatively thick. Thin grid layout palates increase the 

wearing comfort and result in a less distorted 

pronunciation. This, in turn, increases the chance that 

students using grid palates for learning L2 

articulations would have a greater chance of 

preserving the correct articulation habits after the 

palate has been removed. The major disadvantage of 

the grid layout palates is, however, that the EPG 

patterns generated by L2 learners wearing them are 

difficult to reliably compare with native patterns.  

For the purpose of this study, we have therefore 

developed a normalized anatomical palate with 

reduced thickness for low between-speaker 

variability without much compromising on the 

wearing comfort. 

3. NEW TECHNIQUE OF MANUFACTURING 

NORMALIZED ANATOMICAL PALATES 

The design mostly followed the traditional method of 

development of artificial palates with anatomical 

layout. The EPG system originally developed at 

Reading University in the mid 1980’s [4] consists of 

62 silver contacts embedded between two layers of 

two-component heat- and pressure-polymerized 

denture acrylic resin. Steel Adams clasps clip around 

the teeth retain the palate in place. Each of the contact 

sensors is soldered to a copper wire and the wires exit 

around the back of the rear molars. The two bundles 

of wires form each side of the palate are sealed in 

flexible tubing [22] and leave through the corners of 

the mouth. 
 

Figure 1: Original palate with anatomical layout 

of contact sensors 

 

 
 

In our approach (Figure 1), only one layer of 

conventional two-component acrylic is used. The 



electrodes are covered with a thin layer of a one-

component acrylic lacquer that is cured through UV 

radiation. This way we have reduced the mean 

thickness of the palate by approx. 0.35mm (Table 1, 

row 6, column 2  vs. 4; 1.5-2.5mm σ=.49 in the 

Linguagraph palate compared to 1.7-3.4mm with 

σ=.53). The palate thickness in all cases was 

measured as the average thickness at the location of 

all electrodes. We continue our work to reduce the 

relatively wide range of thickness values in our 

design. The technique of developing electrodes was 

also modified: instead of soldering a copper wire to a 

silver disc we inserted the copper wire into a silver 

bead, forged the bead into a bowler-shaped sensor and 

polished the crown to roughly level it with the 

surrounding acrylic. This method assured the firm 

hold of the electrode to the bottom layer of the acrylic 

by the brims. 

4. APPROACHES TO PHONEME 

RECOGNITION 

The state-of-the-art approaches to phoneme 

recognition include 

 the hidden Markov model – Gaussian mixture 

modeling of phonemes [13] with additional 

discriminative training [3], and 

 discriminative models e.g. recurrent neural 

networks [16], large margin classifiers [19] or 

multilayered perceptrons [18] have given higher 

phoneme recognition accuracies. 

In this work, we estimate the posterior probabilities 

of phonemes based on articulatory information by 

means of two discriminative models, forward-

selection linear discriminant analysis (LDA) and a 

four-layer probabilistic neural network (PNN). For 

classification by means of LDA, Statistica statistical 

package was used. For classification by means of 

PNN, we used Statgraphics. 

5. ARTICULATORY DATA 

For comparison with previous studies [19, 21] and to 

avoid problems related to between-speaker 

variability, the data in this study were obtained from 

one speaker per EPG system and covered about 34 

minutes of speech in total. Palatometer was used by 

a 24-year-old female speaker of General American. 

Linguagraph with the original palate was used by a 

41-year-old male speaker of General British. Both 

speakers read a list of 197 items: 10 sentences from 

the List 11 of Harvard Sentences [6], 130 phonetically 

balanced sentences from the TIMIT prompt list [20], 

English alphabet and numerals from 0 to 30. The 

prompts were manually adjusted to provide for minor 

fillers, re-starts and minor misreadings on the part of 

the speakers. The whole list in each case contained 

approx.. 1250 words. The database for General 

American contained 16 min. of audio data and 18 

minutes for General British. The recordings were then 

segmented and annotated with phoneme labels using 

Penn Forced Aligner [8] for General American and 

for General British – FAVE-align [17] with the 

adapted British English dictionary BEEP [14] and the 

General American language model. The annotation 

was subjected to minor manual corrections. 

6. PARAMETRISATION OF THE EPG DATA 

The EPG information was transformed into a set of 

linguistically meaningful and computationally 

manageable parameters – dimensionality reduction 

indices (DRI) adapted from Hardcastle et al. [5]. 

DRI’s for a given phoneme were calculated for the 

single EPG frame at mid time of the phoneme 

duration. The DRI’s were: 

 bilabial region – sum of contacts in the 1st row of 

Palatometer (abbr. P below) pattern divided by 

all electrodes in that row; the 1st row of the P 

palate is labelled as 1 in the left part of Figure 2 

below; absent from Linguagraph – abbr. as L 

below; 

 dental region – sum of contacts in rows P2-4, 

divided by all electrodes in these rows; absent 

from Linguagraph; 

 alveolar to prepalatal – a sum of contacts in rows 

P5-9/L1-5 divided by all electrodes in these rows; 

 midpalatal to velar – sum of contacts in rows 

P10-15/L6-8 divided by all electrodes in these 

rows; 

 total percentage of contacts – sum of contacts in 

rows P1-15/L1-8 divided by all electrodes in 

these rows; 

 general centre of gravity i.e. the weighted 

average of the sum of contacts in rows P1-15, 

where the weights on rows are 14, 13, ..., 1 

respectively, and the weighted average of the sum 

of contacts in rows L1-8 where the weights on 

rows are 7, 6, …, 1 respectively; 

 anterior centre of gravity i.e. the weighted 

average of the sum of contacts in rows P2-8 

columns G-J where the weights are 14, 13, ..., 8 

respectively, and the weighted average of the sum 

of contacts in rows L1-4 for columns C-F with 

weights 7, 6, 5 and 4 respectively; 

 posterior centre of gravity, i.e. the weighted 

average of the sum of contacts in rows P9-15 

columns D-M with the weights on rows 7, 6, ..., 1 

respectively, the weighted average of the sum of 

contacts in rows L4-7 columns B-G, with weights 

on rows 4, 3, 2 and 1 respectively; 



 laterality i.e. the weighted average of the sum of 

contacts in rows P1-15 columns D-M, where the 

weights on columns are 1, 2, ..., 5 in columns D-

H and 5, 4, ...,1 in columns I-M. In rows L1-8 

columns B-G, where the weights on columns are 

1, 2 and 3 in columns B-D and weights 3, 2 and 1 

in columns E-G respectively; 

 asymmetry i.e. the difference between the sum of 

contacts in columns A-H and I-P for Palatometer 

and the difference between the sum of contacts in 

columns A-D and E-H for Linguagraph; 

 fricativity i.e. the sum of contacts in rows P2-5 

divided by all electrodes in these rows minus the 

sum of contacts in rows P6-8 divided by all 

electrodes in these rows for Palatometer and the 

sum of contacts in rows L1-2 divided by all 

electrodes in these rows minus the sum of 

contacts in rows L3-4 divided by all electrodes in 

these rows for Linguagraph. 

 
Figure 2: Palatometer (left) and Linguagraph 

electrode layout; dots indicate electrode locations. 

Electrodes in Palatometer row 10, and col. a and p 

for rows 13-14 were never activated.  

 

 

7. CLASSIFICATION PROCEDURE AND 

RESULTS 

For Palatometer – 3210 unique phoneme-DRI pairs 

were used to develop classification models that 

discriminated among 38 phonemes. As in [21], 

consonants were classified along with vowels. For 

Linguagraph, 3287 unique phoneme-DRI pairs were 

used to develop classification models that 

discriminated among 43 phonemes. In both cases, the 

/ʒ/ phoneme was excluded from all classifications as 

it was illustrated by only 2 cases. In the case of PNN 

classification, jack-knifing (leave-one-out) method 

was used as a cross-validation technique. In PNN, 

prior probabilities used were proportional to the 

observed. The table with results of the classification 

of individual phonemes can be accessed at [12]. The 

results of the general classification is presented in 

Table 2. The best classifier for any EPG system used 

in the study was PNN and it performed with 32.1% 

correct classification rate for the data obtained with 

Palatometer. 

 
Table 2: Classification results for DRI’s calculated 

for articulatory data from two EPG systems 
 

EPG system PNN LDA 

Linguagraph + original 

anatomical palate 

30.8 29.6 

Palatometer   32.1 31.3 

 

The data obtained by Palatometer were generally 

classified at marginally better rate than the data 

obtained by Linguagraph. 

8. CONCLUSIONS 

The higher results of phoneme classification based on 

the data obtained from Palatometer in comparison to 

Linguagraph may be attributed to the fact that 

Palatometer has a higher density of the contact 

sensors, i.e. 124 electrodes (114 activated at least 

once) vs. 62 in Linguagraph. Moreover, Palatometer 

has 2 bilabial and 10 dental sensors that palate 

designed to work with Linguagraph did not have. 

Finally, the accuracy of forced alignment for 

American data may be higher than that for British 

data. 

The correct classification rates presented in 

Table 2 are relatively low compared to the results 

reported in [21]: phone error rate of 35.7% for 

monophone recognition on TIMIT data using all 

sources of physical measurement, i.e. EMA, EGG and 

EPG. It should however be noted that in [21] EPG 

data yields only 1.5% absolute PER reduction to the 

result obtained based on EMA and EGG and that 

authors do not report PER based on EPG alone. 

Moreover, in [21], 30 minutes of speech was used 

compared to 16-18 minutes used in the present study. 

Our results may thus suggest that: 

 the classification of 38-43 phonemes based on 

3210-3387 phoneme-DRI pairs is challenging. 

Multiple coarticulatory and random effects cause 

DRI’s to vary greatly. Preliminary experiments 

on General British data [12] indicate that the 

results of PNN classification reach 49.46% if 

trained on a set of 24985 phoneme-DRI pairs 

obtained with Linguagraph and our original 

anatomical palate; 

 the phoneme classification problem is difficult to 

solved without considering the probabilities of 

phoneme or word sequences (e.g. in the form of 



Hidden Markov models and N-gram models, c.f. 

[21]); 

 in further tests, additional methods of deriving 

DRI’s should be considered, e.g. principal 

component analysis; 

 recognition could be further improved by 

providing additional sources of physical 

measurement. 

Still, the results show that the tested EPG systems, 

irrespective of whether their electrodes are arranged 

in the anatomical or grid layout, both can be used for 

phoneme recognition, and consequently, both allow 

comparably reliable mapping of articulatory to 

acoustic distinctive features. We have also 

demonstrated that, with respect to the phoneme 

classification results, the original anatomical palate 

developed for the purpose of the project the present 

study is a part of, is on a par with the commercially 

available solution. 
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