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Abstract: The initial investigation of an objective measure of speech processing in noise is
presented that uses models of auditory processing as the speech analysis stage and a simple
distance measure classifier to provide identification scores for speech presented in noise.

introduction:

Traditionally, speech intelligibility in noise is assessed by measuring percent correct scores from
human listeners who are required to identify the speech presented in a background of noise. The
ability of human listeners to process speech in noise can be manipulated by a iarge range of
variables (Dermody, 1994). However, even in difficult listening tasks such as when listeners are
asked to identify monaurally presented nonsense syliables presented in noise, their performance
levels are still quite high (Dermody, 1994).

For nonsense syllables presented in noise listeners do not have high level linguistic or world
knowledge to assist their judgements and so it can be assumed that listeners identify spoken
syllables in noise by comparing the incoming acoustic pattem with a stored prototype or exemplar
pattern or set. Of course the question of what aspects of the pattern (global or feature components)
are important for perception constitutes a major focus of many speech perception studies (eg Lee
and Dermody, 1992).

In the present study we investigated the performance of an objective system for measuring speech
intelligibility performance. The objective system includes speech processing methods based on
human auditory functions and a simple distant measure classifier that uses the signal in quiet as the
reference pattern and compares it to the representation of the same sound when presented in naoise.
The main purpose of the study is to compare a method of auditory processing based on a
psychoacoustic model with a composite model incorporating higher” level processing capability.
Auditory models have frequently been reported to produce good results for speech processing in
noise (e.g. Dermody, 1993)

Auditory modeis

The model referred to as the Zwicker model in this report is based on the work of Zwicker (1990) who
provides extensive psychoacoustic data about processing in the peripheral auditory system. Our
implementation does not model the external and middle ear systems that predominantly add a high
frequency emphasis to the spectral output. The auditory model analyses the input signal using an
FET based on a Bark scale. Across channel interaction is modeiled using a smearing function that is
convolved with the FFT output. It should be noted that our approach only models across frequency
channel interaction in a single frame and does not mode! across frame interaction that occurs from
temporal integration of signals. The output of the modelling process is a spectrum every 5 msecs
that are added to form an integrated spectrum of the full duration of the speech sound.

The second model used in this study is based on an auditory model by Ghitza (1986; 1987;1988).
The model employs 24 filter channels based on the ERB scale. These filters represent the basilar
membrane filtering action of the cochlea. The operation of the hair celis and nerve fibres is
simulated as an array of level-crossing detectors at the output of each filter. These are
logarithmically spaced providing a compressive function for increases of signal power at each filter.
The output of the level crossing detectors represents the discharge activity of an ensemble of
auditory nerve fibres.

The next stage modelled in the Ghitza model is assumed to be a more central stage of auditory
processing which assumes a place-independent structure and operates on detailed timing information
in the auditory nerve fibre responses. This structure is simulated by an Interval Histogram at the
output of each channel which are summed into an Ensembie Interval Histogram (ElH). The EiH is a
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measure of the spatial extent of coherent neural activity across the simulated auditory nerve and is
represented by the short-term probability density function of the reciprocal of the intervals between
successive nerve firings.

The EIH can be converted back to a frequency scale because the tonotopic information is present
implicitly in the timing representation. In the implementation of the model used in this study the
pseudo-spectrum produced by the EIH is produced every 5 msec and then added to produce an

integrated spectrum of the duration of the speech sample.
Speech Sound Classifier

The present method extends a technique investigated by Dermody, Raicevich and Katsch (1993) for
measuring performance capability of auditory models in noise. In the present method the integrated

spectrum produced as the output of both auditory processing models is used to ‘identify’ the speech
sound presented in noise. The technique uses the integrated spectrum of each speech sound
analysed in a quiet condition (no additive noise) as a prototype against which to compare the speech
sound spectrum from the same sounds presented in different noise conditions. The comparison of
each noisy speech spectrum with each quiet prototype provides an unbiased estimate of identification
performance (within the constraints of the speech database used). The technique provides a percent
correct score by using the best match from the classification process and sums these across speech
sounds and speakers to provide a total percent correct score. Diagnostic information is also
available from confusion matrices produced with the method but only percent correct results are

presented in this report.
Speech Database and Noise Conditions

The speech database was produced by editing 18 English consonants from continuously spoken
sentence material. The recording environment was the same as that reported in Millar, Dermody,
Harrington and Vonwiller, (1993). All consonants were spoken in a quiet environment by 40 speakers
with approximately equal numbers of different genders. The text of the database had been
constructed to produce an example of each of the 18 consonant sounds in only one vowel
environment, /a/. The material therefore represents realistically spoken material (as a target in a
continuous sentence which was unknown by the speaker) but is constrained by use of only one vowel
context.

The spoken corpus was edited to extract the 18 consonant targets of interest in such a way that only
the initial consonant portion was segmented. This involved editing the speech sounds using
waveform information (supported by spectrograms if necessary) so that no specific transition
information into the vowe! was included. The editing was carried out by a trained acoustic
phonetician who also listened in good listening conditions and confirmed that vowel identity could not
be heard in the edited material. This strategy was adopted to ensure that the speech sound database
used in this study represented reasonably homogeneous speech sound information about consonant
identity. Previous work (eg. Dermody, Mackie and Katsch, 1986) has shown that listeners are able to
use just the consonantal portion (ie. before the transition) to accurately identify speech sounds. The
speech sounds were checked and then included in the speech database used in this investigation.

Noise:

The noise was digitally added to the speech files and was one sample of large noise database
collected in real office environments (Raicevich and Dermody, 1991). The duration of the noise was
matched to the duration of each sample speech and adjusted to equal the power of each speech
sample. Five different signal to noise ratios were included in the study: +20, +10, +5, 0, -5 dB.

Method
Each speech sample was analysed in quiet and in each signal to noise ratio and processed by each

auditory model. The spectral outputs of the models were used o classify the speech sounds by
comparing the quiet prototype with the noisy spectra using a distance measure to determine the best
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match between the quiet and noisy spectra. The results are presented as percent correct for each
auditory processing model based on the adding the correct matches and presenting them as a
percentage of possible correct matches.

Results

The results of the processing and classification of the speech database are presented in Figure 1.
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Figure 1

Discussion

The present resuits indicate that while performance of both auditory model processors is good at a
high signal to noise ratio of +20 the performance decreases rapidly for poorer signal to noise ratios.

The present results provide a baseline of performance capability of two auditory processing models.
The Zwicker mode! is based on a simple implementation of filtering and smearing while the
implementation of the Ghitza model increases computational complexity to provide better noise
cancelling output. The implementation of the Ghitza model does perform significantly better at the
+10 and +20 dB signal to noise ratios which suggests that the enhancements provided in that model
may be beneficial for processing speech in noise. However both auditory model processors degrade
significantly at -5 dB and 0 dB signal to noise ratios although performance from both is still above
chance even at the poorest signal to noise ratio.

Further investigations are now needed to determine the level of human identification for the same
stimulus and whether additional tuning of the auditory model provides improved performance.
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