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Abstract — Reconfiguring a speech synthesiser to a new voice requires substantial
amount of effort. As a result, current synthesisers offer only a very timited number of
voices. Methods for automating this process will greatly expand the utility of speech
synthesis. This paper presents the development of an enhanced method for the
automatic segmentation of speech into phonemes, particularly suited for concatenative
speech synthesis. its effectiveness is tested in an analysis/resynthesis procedure, and in
the subsequent perceptual evaluation of typical sentences selected from a large speaker
population. Results indicate that this technique can be successfully used for the
segmentation of speech for synthesis applications.

INTRODUCTION

Speech synthesis by rule has made considerable advances and it is being used today in numerous
text-to-speech (TTS) synthesis systems. Current systems are able to synthesise pleasant-sounding
voices at high intelligibility levels. However, because their synthetic speech Guality is still inferior to that
of fluently produced human speech, efforts are continuing towards the development of natural
sounding TTS synthesisers.

An important aspect of speech synthesis is the type of voice modelled during analysis. Although the
model speaker is carefully selected, circumstances arise where an inventory of different voices is
desirable. Offering an extensive number of different voices will be beneficial for many applications and
it will further promote the utility of this important speech technology area. Moreover, in speech-to-
speech translation services of the future it will be useful if the synthesiser of the target language couid
be reconfigured to the voice characteristics of the speaker of the source language. However, currently
the development of speech synthesisers is a process that requires substantial resources in time,
computation and expertise. As a result, only a small number of voices is available in synthesis
systems today.

Speech segmentation is a vital procedure in many speech signal processing applications (Barry and
Fourcin, 1992; Vidal and Marzal, 1990; Ljolje et al, 1994). In recent years, efforts have concentrated
on developing automatic speech segmentation algorithms mainly as part of speech recognition
systems, with varying degrees of success (Torkkola, 1988; Muthusamy and Cole, 1992 Zue et al,
1989 Glass and Zue, 1986 and 1988; Gong and Haton, 1992; Talking 1994).

Automatic speech segmentation is also an integral part of the process of sound inventory selection for
synthesis. For the development of speech synthesis the utterances spoken by the model speaker are
predetermined and their phonemic transcription is known. Also, the material spoken by the reference
speaker has relatively short duration and it is hand-segmented and labelled into its constituent basic
units. In order to facilitate the reconfiguration of an existing synthesiser to the acoustic features of a
new speaker, and apparent technique is the reading of the same material as used by the model
speaker or the reading of a specified passage for subsequent analysis.
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Dynamic time warping-based (DTW-based) labelling has been used for the labelling of speech
databases for recognition (Gong and Haton, 1992), which has some similarities to the problem
investigated in this paper. However, the determination of phonetic deletions, insertions and
substitutions is especially important in this application, and the effectiveness of the method must be
evaluated both quantitatively as well as gualitatively.

OUTLINE OF APPROACH

Dynamic time warping is based on the derivation of the mapping function between spoken utterances
based on a specific distance metric. 1t is usually followed by the computation of the accumulated
distance between a reference prototype and possible candidates, and the subsequent ranking of all
candidates in terms of their similarity to the prototype. This technique has been successfully used in
many speech recognition applications (Rabiner and Schafer, 1978; Deller et al, 1993; Waibel and Lee,
1990).

The speech material for the signal features evaluated in this paper consisted of the complete SA1 set
of the TIMIT database. This set comprised a single sentence, with fixed orthographic transcription,
spoken by 630 speakers, of which 438 were male and 192 were female. The sentences were
resampled at 12 kHz. Frame-based pre-processing was performed with optimal pre-emphasis, with
Hamming windows of 35 ms duration, and a window-shift of 15 ms.

Examination of the phonemic transcriptions of all 630 sentences in TIMIT corpus, and perceptual
evaluations were used to determine the single most preferred sentence in terms of intelligibility and
phonemic clarity. That sentence was used as the “mode!” sentence for all subsequent evaluations.
The remaining 629 sentences were ranked according to the quantitative degree of similarity to the
mode! sentence. That was achieved by developing an automatic procedure for the comparison of
phonemic transcriptions provided by TIMIT. Dissimilarity was derived by counting the number of
phonemic deletions, insertions and substitutions occurring in a particular sentence when compared to
the model sentence.

QUANTITATIVE EVALUATION

Three sets of scenarios for the segmenter were formulated. In the first set, scenarios A, segmentation
performance for different feature vectors was compared. In the second set, scenarios B, two distance
measures were evaluated. Finally in the third set, scenarios C, three warping constraints were
compared. All scenarios are summarised in Table 1.

Scenario | Feature vector | Distance measure Warping constraint
(10 coefficients)

A, PARCOR Euclidean none
A, cepstrum Euclidean none
A me! cepstrum Euclidean none

"B, [melcepstum |cityblock |1 e
B, mel cepstrum Euclidean none

TTC, | melcepstrum | Euclidean |1 none
C, mel cepstrum Euclidean standard duration constraint
C, mel cepstrum Euclidean phoneme-specific duration constraint

Table 1. Scenarios used to evaluate performance of the segmenter.
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Evaluation of the feature vectors

The initial procedure for the development of the segmenter consisted of the implementation and
performance testing of different feature vectors. Drawing from work by Davis and Mermelstein (1980),
some of the most effective features for recognition were used. They were partial coirelation
(PARCOR), iinear prediction derived cepstrum and mel cepstrum coefficients.

PARCOR coefficients were obtained by linear prediction (LP) analysis using Levinson-Durbin
recursion as described in Rabiner and Schafer (1978).

The PARCOR coefficients were then transformed into cepstrum coefficients using (1) resulting in LP-
derived cepstrum coefficients.

n-l ( k

ﬁ(n)=a,,+ZG]*ﬁ(k)*a,,,k,nsa..‘v, 1)
k=1

Vel
(64

where A(z)=—p—,

1-> a2
k=]
and o is the i-th LP coefficient, P is the order of prediction, and G is the gain of the model. H(:) and

};(n) are estimated transfer function and impulse response of the speech production model
respectively.

Mel-frequency cepstrum coefficients (MFCC) were calculated using (2).
20
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where X, is log-energy output of k-th filter. There is a total of 20 mel-frequency spaced filters. The
energy spectrum used as input to the filters was obtained by evaluating the transfer function of the LP
model of the 20 order along the unit circle.

After the application of the DTW comparison technique, the mel cepstrum coefficients performed the
best. The resuits, in the form of the total number of boundaries for each of the scenarios used, are
presented in Table 3. The total number of boundaries for each of the scenarios is classified according
to the distance from the labels provided by TIMIT and is shown for the distance ranging from 0 to 9
frames.

Evaluation of the distance metrics

Following the testing of different feature vectors, the city block metric and the Euclidean metric were
compared on the same task, for segmentation performance of the mel cepstrum coefficients. The city
block metric is defined as:

N
d(x’Y) = ;]xi "yf|x

and the Euclidean distance metric is defined as:

d(x,Y)=\/m,

i=]

where N in the number of features per vector, ten in our case, and x and y are MFCC vectors.
Evaluation of the two metrics revealed that the Euclidean distance outperformed the city block metric,

and as a result, it was adopted as the standard distance measure in all subsequent tests. The results
are shown in Table 3.

Evaluation of phoneme duration constraints

The final stage in the development of the system was the evaluation of the effectiveness of duration
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const‘raints. In order to compare this technique against different methods reported elsewhere standard
duration constraints (Gong and Haton, 1992) were included in the evaluation procedure.

The standard duration constraints impose penalties proportional to a phoneme duration expansion or
contraction whenever that is detected during the comparison of two spoken utterances. That penaity is
calculated directly from the warping aigorithm by measuring the deviation from the optimum mapping
function, which is the diagonal line between the two compared utterances. The penalty was the same
for all types of phonemes.

In order to further improve performance,

in this work compressibility and Group _ Phonemes Penalty
expandabilty was made phoneme- | h# no
specific. Sentence-initial and sentence- I pau low
final silences were aliowed to vary ’

arbitrarily. Changes to the pause and the i epi medium
epenthetic silence durations were given bellb, delid, golfg, pelfp, teiit, kelk

low and medium penailties respectively. ' ' ' T ’

Similarly, changes to the duration of all g, mn,wy

plosive closures, the glottal stop, the v other high
nasals, and the glides were given

medium penalties as well. The highest  Taple 2. Groups of phonemes with common
penalty was reserved for the remaining compression/expansion penalty.
phonemes. Table 2 presents a summary

of the phonemic groups and the

corresponding penalty levels used in this method.

The different penalty levels resuiting from the proposed phoneme-specific cost were incorporated into
the accumulated cost as shown in expression (3).

AC, ;= min{AC,»J._,,AC,_U,AC,_U_I } + LC,‘J. + A(i,j,m,n,phonemek) (3)
where AC is accumulated cost, LC is local cost, and A is phoneme-specific duration cost.

The phoneme-specific duration cost A was calculated accordingly to (4).

(m+(j—n) LT"'"J—I'

Ly~n

A(i,j,m, n, phonemek) =1 (phoneme,‘ ) (4)

where A 2 0. Figure 1 clarifies all variables introduced in (4). The coefficient A controls how much
deviations from expected duration are being penalised. Note that when 1 = 0 the accumulated cost
collapses into the standard DTW cost.

The local path constraints of the

warping process were simple

left-to-right, bottom-to-top and Reference
left-bottom-to-right-top

transitions (Deller et al, 1993).

Evaluation of the three different
duration constraints indicated
that the  phoneme-specific
constraints  outperform  the
standard duration constraint.
Table 3 summarises the results
of this scenario. The system
performance was best using the
phoneme-specific duration
constraint.

phonemekl j
n

m i Test

Figure 1. Situation for calculation of the phoneme-specific duration
cost.
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Distance from the TIMIT label [frame]
Scenario 0 1 2 3 4 5 6 7 8 9
A, 31 39 15 7 4 1 1 1 0 0
A, 31 40 16 [} 3 2 1 0 0 0
A, 35 39 15 6 3 1 0 0 1 0
—_—B—1 ______ 1;4—__3_9—“-—1_5_—__6_-——_3—_—_1———_1_—___0_~_—1__—_6
B, 35 39 15 6 3 1 0 0 1 0
—_—61 ______ ?75—~_??9—_“1_5————6_—__3_——_1_——_0”_‘—0__—_1____6
C, 25 31 14 8 5 3 3 2 1 2
[oN 36 40 14 6 2 1 0 0 0 1

Table 3. The total number of boundaries [%)] for each of the scenarios.

SPEECH ANALYSIS/RESYNTHESIS AND QUALITATIVE EVALUATION

The goal of the segmentation procedure outlined above was to facilitate the rapid reconfiguration of a
speech synthesiser to new voices. Therefore, it was important to specify a method which would make
possible to measure the effectiveness of this technique in speech analysis and resynthesis, and to
evaluate the perceptual quality of the resynthesised sentences. For this purpose, a concatenative
speech synthesiser was employed, based on a 15" order linear prediction model.

For sentence resynthesis the phoneme durational information and the derived fundamental pitch
vaiues were provided. The resynthesis strategy employed was based on the representation of the
signal by a minimal number of frames, which were as few as one frame per phoneme depending on
whether the phoneme was by its nature stationary (e.g. a vowel or nasal) or nonstationary (e.g. a
diphthong or plosive). All frames retained represented quasisteady states of the signal. Frame position
within the phoneme was first located to be in the middle of the phoneme. The exact frame location was
subsequently determined by utilising the first derivative of the short-term energy and of the first and
second PARCOR coefficients. The new frame location was placed at the point where at least one of
the three features used reached a focal minimum. Each frame consisted of the optimal pre-emphasis
coefficient used during analysis, 15 PARCOR coefficients and windowed and quantised residual
signal. Speech was synthesised from this limited set of frame parameters by interpolating between
adjacent frames and switching between appropriate excitation functions at required instances, as
provided by the segmenter.

In order to minimise the contribution of secondary factors, phoneme durational and pitch information of
the model sentence was used in the resynthesis of all other sentences. Perceptual evaluation of this
resynthesis scheme was performed by selecting from the top of the list the five male-spoken and the
five female-spoken sentences most similar to the mode! sentence and from the bottom of the list the
five male and five fermale most dissimilar sentences. The differences of the accumulated boundary
errors between these two sets of sentences were derived as shown in Table 4, and it was revealed
that the most similar sentence set had been segmented more accurately than the most dissimilar
sentence set. However, the error differences are relatively small.

These twenty sentence-pairs were also played in random order. Subjects were asked to listen to each
of the twenty natural sentences and to their corresponding resynthesised versions. The speech quality
was evaluated on a scale from 0, indicating highest similarity to 10, indicating lowest similarity to the
original. After normalisation the average score for similar sentences was 4.85 and for dissimilar 5.37.
Results show that although the score difference between the two sets was only 5.2%, the sentences
phonetically closer to the modet sentence were segmented more accurately than the phonetically
dissimilar sentences. importantly, however, the perceptual effects were not substantial.
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Phoneme boundary location error [frame]
0 1 2 3 4 5 6 7 8 9

15% 48% 51% 14% 19% 14% 09% 00% 00% 0.0%

Table 4. Difference of the accumulated percentage of the total number of
boundaries befween the sets of most similar and most dissimilar sentences.

CONCLUSION

In this paper, it was shown that phoneme-specific duration constraints improved the performance of
dynamic time warping-based speech segmentation. The best segmentation was achieved using 10
mel-frequency cepstrum coefficients with Euclidean distance, together with the phoneme-specific
duration constraints. Using this setup 76.0% of the phoneme boundaries were located within +/-1
frame, 90.3% within +/-2 frames, and 98.7% within +/-5 frames. When a simple
(non-phoneme-specific) duration constraint is used error rates may increase especially when warped
sentences have a variable length leading and trailing non-speech signal included, such as when no
proper end-point detection is used. Perceptual evaluation revealed that the perceived difference
between the similar set of sentences and the dissimilar set of sentences was only 5.2% which is not
substantial. This was in accordance with the quantitative evaluation of the two sets.
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