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ABSTRACT - The paper describes the generation and use of a context free grammar as a
component in both a speech recognition and speech understanding system. An N-best
speech recogniser was run on sentences from the ATIS-2 distribution and the top 25
hypotheses for each were produced. Post-processing grammar models-- bigrams, trigrams, co-
occurrence, finite state, and semantic MM were employed to reorder the hypotheses. All
showed considerable reduction in sentence error rate. The incorporation of the CFG lead to a
further, significant reduction with the best showing more than a halving in original error rate. The
speech understanding experiments comprised a finite-state grammar based system for
translating class-A sentences into database queries. Incorporation of the CFG dramatically
improved translation rate as well as reducing the finite-state grammar's perplexity & complexity.

INTRODUCTION

In the last ten to fifteen years considerable emphasis has been placed upon large vocabulary, speaker
independent, continuous speech recognition systems. Even more recently considerable research
effort has been focussed upon speech understanding systems. [n such cases an integral component
of any automatic system is a language or grammar model to both improve the recognition accuracy and
form the basis of the understanding component.

Spontaneous speech presents a unique challenge due to its very spontaneous and oft times
ungrammatical nature. Conventional rule based grammars predicated on written language have been
found to be inadequate and statistically robust techniques such as n-grams have found ascension.

While such techniques as n-grams are adequate for speech recognition, if the additional step of
speech understanding is to be undertaken a grammar model that may be employed to extract the
meaning of a sentence is required. Clearly there appears scope, and indeed a requirement, for the
combination of the "localised" properties of an n-gram grammar with the more "spanning" properties of
understanding targeted grammars such as a finite-state grammar.

One compelling approach to this problem is to employ a context-free grammar (CFG) in conjunction
with another grammar model. The CFG may be generated automatically from training data and serve to
cluster and exploit the "locality" of the spoken data which may then be incorporated into the second
grammar. If the process of CFG and subsequent grammar generation is automated the approach may
be quickly ported to other tasks without the usual, human-intensive 're-wiring' of the grammar(s).

This paper will describe two sets of experiments conducted using DARPA's ATIS (Air Travel
Information Service) (MADCOW, 1992) task, both employing an automatically acquired CFG (AACFG).
The first set comprises reordering experiments on a speech recogniser’s hypotheses. Five different
grammar models (bigram, trigram, co-occurrence, finite state, and semantic markov model) were
employed to rescore the hypotheses. Incorporation of the AACFG for all five grammar models
witnessed a significant reduction in sentence error rate. The second set of experiments comprise
translation of ATIS class-A sentences into an unambiguous query language for the database via the
mechanism of a finite-state grammar. Once again incorporation of the AACFG led to a dramatic
improvement in the performance of the system.

THE DATA

The ATIS task represents many of the most difficult problems in speech recognition today:
continuous, spontaneous speech from a farge number of speakers. Many of the sentences contain
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such ‘artifacts' as restarts, pauses, and corrections ("/'d like to book a, are there, is there a first-class fare
for the flight that departs at 6:40p.m."), are contextually dependent (“No, on Thursday.”), or are simply
unanswerable ("What is the payload of an African Swallow?").

The task itself comprises answering user's spoken queries from a database of flight and airport details
for 35 North American cities. Query of the database is achieved through generation of an SQL query
or equivalent, unambiguous query language.

Individual sentences are split into one of three classes dependent upon a system’s requirements to
answer the gquestion posed. Class-A sentences are self contained queries that require no further
information. Class-D sentences require information that the user has specified in a previous
sentence(s). Class-X sentences are simply unanswerable.

Table 1 details the breakdown of data from the ATIS-0, 2 and 3 distributions, that was employed for the
various components of the experimental systems. In all circumstances there was no overlap between
training data and testing data for the same experiment.

TASK DATA EMPLOYED

CFG generation 9338 sentences from ATIS-0, ATIS-2 and ATIS-3 training sets

bigram, trigram, co-occurence | 5307 sentences from ATIS-0, ATIS-2 training sets
& finite-state training

semantic MM training 1200 sentences from ATIS-0, ATIS-2 training sets
hypoth. recrdering testing 455 sentences from ATIS-2 test set

translator training 1915 class-A sentences from ATIS-2

translator testing 213 class-A sentences from ATIS-2

Table 1. Breakdown of data employed for experimental training and testing.

GENERATION OF THE CFG

Automatic acquisition of the CFG was achieved through a process of grammar inference (McCandless
& Glass 1994).

Each iteration of the algorithm sees the merging of two units u;and u; on the basis of the divergence
between the left and right bigram contextual probabilities for the two units. Units may be words, non-
terminals or "phrases”--groups of two or more words and/or non-terminals often found together.

The divergence value for two units ui and uj is found via the following formulation:

i uj, Yj i = d(P;,Pj) +d(P},Pi)
d(Pi,Pp = Z Pi(c) x log EJL((%
¢ ¢ Context

Pilc) = Plciu)

The two units showing the least divergence are merged to form a new non-terminal.

A phrase queue of size n (100 for these experiments) is kept at each iteration by finding those units
that occur together most often by using the following formulation:

Ml
DU = -N(u;,u])xlogmi%'%)(m

Table 2 shows the state of the grammar after 1, 5 and 8 iterations. In all, one hundred iterations of the
algorithm were performed.

Due to the slowness of grammar inference the algorithm was seeded with a small hand-written CFG that
included some numbers and dates. It can be seen that the 4'th non-terminal created merged two of
these classes (the dates "first"..."ninth" and those "tenth" to "thirty first").

Hypotheses reordering experiments were run with the grammar inferred at each step. While
performance generally increased as the grammar grew in size there appeared no definite cut-off based
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either on reordering performance or automated measures of the algorithm's parameters. Indeed
reordering performance occasionally fluctuated and at times dropped slightly with the introduction of
new non-terminals before flattening out from approximately 50-iterations onwards. As such a final
stage was added to the grammar inference:- after the algorithm was terminated a hurman reviewed the

,,,,,, T S P N Y Y o s e mbae A

non-terminals generated and eiiminated any that appeared non-sénsicai (oniy a very small number of
non-terminals were altered in this way).

ITERATION 1 ITERATION 5 ITERATION 10
NTg: what is | what's NTg: whatis | what's | what're NTq: what is | what's | what're

NTq: petersburg | paul NTy: petersburg | paul

NTyo: kinds 1 type NTo: kinds | type

NTg: <datest> | <dates2> NTs3: <dates1> | <dates2>
NT4: most | least
NTg: hilhello
NTg: long | much

Table 2. CFG at iterations 1, 5, and 8 of the grammar inference algorithm.

After the 100 iterations of the inference algorithm and the human post-processing a CFG comprising
46 non-terminals and several hundred units (words and phrases) was derived.

GRAMMAR MODELS

A total of five different stochastic grammar models were employed in the hypotheses reordering
experiments and evaluated one against the other, both without and with the incorporation of the
AACFG. These grammars were: bigram, trigram, co-occurrence, finite state, and semantic markov
model.

Bigrams & Trigrams

Both bigram and trigram grammar models were trained using the available data with back-off smoothing
(Jelinek & Mercer, 1980) into lower order n-grams (bigrams, unigrams). Flooring was alsoc implemented
to handle data unseen during training.

Co-occurrence

A left-to-right word co-occurrence grammar of the form: P(w; | wj, j>i) was trained on the available data.
Right-to-left and full co-occurrence grammar models were also trained and tested, and though their
results are not reported here they are very similar to that of the left-to-right variant.

Finite-State Grammar

A stochastic finite state grammar model was built using the ECGI (Error Correcting Grammar Inference)
algorithm (Rulot et. al 1989, Prieto & Vidal 1992). A penalty score (probability) of 0.1 was imposed for
substitution, deletion, and insertion errors (ie. in those cases where a sentence could not be parsed
without an error).

Figure 1 shows a simple finite state grammar buitt using the ECGI algorithm and 4 training sentences.

Semantic Markov Model

A semantic markov model (Pieraccini et. al. 1991, Barlow et. al., 1995) was trained with a set of 1200
hand-labelled sentences from the ATIS-0 and ATIS-2 distributions. Each word within a sentence was
assigned to one of 35 semantic classes. The classes were then equated to markov model states and
transition and emission probabilities obtained for a fully ergodic model.

HYPOTHESES REORDERING EXPERIMENTS

A number of hypotheses reordering experiments were conducted and will be summarised here. In
brief a speech recogniser was run on a set of sentences and its top twenty-five hypotheses for each
sentence were generated. The previously described five grammar models were then used to rescore
the hypotheses and a new sentence recognition rate was obtained allowing the contrast of the
different grammar models as weil as evaluating their performance both with and without the CFG .
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Figure 1. A simple finite-state grammar built with the ECGI algorithm.
The Speech Recogniser

An N-best, tree-trellis based speech recogniser (Chou et. al. 1894) was employed to process the input
utterances into a set of hypotheses. The recogniser employs context-dependent inter-word triphone
modeis in a continuous HMM framework, with a bigram word grammar.

Conduct

The N-best speech recogniser was run on a set of 455 sentences taken from the ATIS-2 test set and
generated 25 hypotheses for each sentence. The hypotheses were then examined and only those
sentences for which at least one acceptable hypothesis existed were retained, leaving a total of 355
sentences. Acceptable sentences were those of equivalent meaning to the original utterances (e.g.,
the sentences “Find flights from Pittsburgh to San Francisco" and "Find flights Pittsburgh to San
Francisco" would be considered equivalent) while still being grammatically and syntactically correct.
This criteria was selected with the end-goal of an understanding system in mind.

The remaining 8875 (355 sentences by 25 hypotheses each) hypotheses were scored by each of the
five grammar models in turn and the 25 hypotheses for each sentence reordered on the basis of the
combined likelihood scores of both the speech recogniser and the grammar model in question. The
sentence was deemed correct if the top-hypothesis of the reordered list was an acceptable one for
that sentence. The top hypothesis was found using the following formulation:
N w
arg max PH(hi)PG (h])
t

. . . i N, .
where h; is the i'th hypothesis, Pg() is the recogniser's likelihood score, P () is the grammar model's
normalised (on basis of number of words) likelihood score, and w is a weighting factor which varies for
the different grammars.

In the case where the AACFG was combined with the grammar models both the training and testing
(output of the recogniser) data were first parsed using the AACFG. Where matches were found the
corresponding non-terminal symbol was substituted for the matching word(s) (e.g., a city name such as
"San Francisco" would be replaced with the non-terminal symbol that clustered/matched cities). This
modified training and testing data was then used to (respectively) train the grammar models and as
input for the testing.

Results

Figure 2 shows the results of the hypotheses reordering experiments for all five grammars in question
and both with and without the AACFG incorporated.

Several results are immediately clear from the figure. Firstly, the addition of any post-processing
grammar significantly improves the recogniser's performance (a reduction in error rate from 25.6% to a
mean of 19.3% without the CFG).

Secondly, and in the case of all 5 grammars, the addition of the CFG led to further, significant
reductions in error rate (average case of 19.0% to 16.3%).
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Figure 2. Hypotheses reordering results for the 5 grammar models both with and
without the incorporation of the CFG.

Finally it is possible to compare the performances of the five individual grammar models. Clearly
trigrams peiform significantly better than the other four models. 1t is worth noting that of the five
models, four had exactly the same training data and only the semantic markov model differed in having
significantly less due to the requirement that its training data be hand labelled.

SPEECH UNDERSTANDING EXPERIMENTS

A second set of experiments involving a speech understanding task were carried out using the
previously described and generated CFG. These experiments comprised the transiation of ATIS class-
A sentences into Win (Wizard Input-an unambiguous English language query of the database that is
directly and simply translatable to SQL) sentences.

The translation was achieved by building finite-state grammars using the ECGI algorithm for both input
sentences and output Win sentences. Using the paired (input sentence and corresponding Win
query) training data mapping rules between the two grammars were derived so as to achieve the
transiation of an input sentence. As for the hypotheses reordering trials, experiments were conducted
in which the input (training and testing) sentences were unprocessed and where they were pre-
processed by the CFG and the results contrasted.

Translation System

As described more fully in (Matsuoka et. al.,1986) a translation system was built using ECGI derived
stochastic finite-state grammars of the input spoken language and output WIn sentences with a
training set of 1915 sentences.

Translation was achieved via a set of mapping probabilities between arcs of the input grammar and arcs
of the output grammar: P(R,, | R;) -- probability that an arc of the output grammar R,, will be taken given

an arc of the input grammar R; was taken.

An input sentence for translation would be parsed by the input grammar and a path through the
grammar obtained. Using the mapping probabilities associated with these arcs the output grammar's
arc probabilities would be modified (muitiplied by the mapping probabilities associated with the input
grammar arcs that were traversed). A viterbi based algorithm was then used to find the best path
through the modified output grammar. This path defines the output sentence.

Results

Table 3 shows the results of grammar training and translation experiments for 213 test sentences from
ATIS-2 when the CFG is excluded versus included (sentences pre-processed by CFG) in the process.
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No CFG CFG
Number of States 1925 1053
Number of Arcs 5187 2723
Perplexity 14.92 8.47
Translation Rate 33.3% 62.4%

Table 3. Translator performance with and without the CFG incorporated.

It is clear from the table that not only does the CFG greatly reduce the complexity and perplexity of the
input grammar but it also significantly improves the translation rate, almost doubling it. Indeed this
improvement in translation rate is no doubt due to the reduction in parameters that need estimating in
the system and hence leading to a more reliable and statistically robust estimation of the parameters.

CONCLUSIONS

A series of speech recognition and speech understanding experiments were conducted in which the
utitity of an automatically acquired contexi-free gramimar was evaitiated.

The speech recognition experiments comprised a hypotheses reordering task using five stochastic
grammars:- bigrams, trigrams, co-occurrence, finite-state and semantic markov model. In all cases the
CFG's incorporation led to further, significant reductions in the error rate, with the best system (trigrams
employing the CFG) more than halving the recogniser's error rate.

The speech understanding experiments comprised a finite-state grammar based translation system.
Incorporation of the CFG in the processing of the input sentences greatly reduced the complexity of
the input finite-state grammar and lead to nearly a doubling in the translation rate obtained.

Considerable scope for further work exists. Eliminating the need for human post-processing of the
CFQ@ is clearly desirable. The translation system shows much room for improvement and though not
reported here experiments have shown that parameters of the ECGI training algorithm play a significant
role in this respect.
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