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ABSTRACT

The digit-specific feature extraction approach extracts distinguishing features of spoken dig-
its in order to use a smaller amount of data to represent the digits. This reduced represen-
tation of the distinctive acoustics of the digits was evaluated in an isolated digit recognition
task using a multi-layer perceptron neural network architecture. The acoustic-phonetic de-
sign of features for English digits is described as is the means to extract them from spoken
utterances. The results of a recognition system based on this feaure set are presented for
the conditions of multi-speaker dependent and speaker independent testing. The data set
for this study is the ten isolated digits ‘zero’ to ‘nine’ spoken by three male and five fernale
Australian speakers.

INTRODUCTION

The selection of the best parametric representation of acoustic data is an important task in the design of
any speech recognition system. The standard approach is to use all analysis frames that are available,
but it is feasible to reduce the complexity of the system it only those frames of the reference utterance
which are distinctive within the overall utterance set are compared.

In this paper, a digit-specific feature extraction (DSFE) approach is exploredfor the mutti-speaker Isolated
Digit Recognition task. The novel DSFE approach is based on the philosophy that comparison is required
only at such distinctive points of the utterance. This approach avoids the computationally expensive
dynamic time-warp procedure.

The phonetic structure of a spoken English digit consists of at most two voweis with maybe initial, middle,
and final consonants. All these digits, with the exception of “eight”, have an initial consonant. Although
there are many different characteristics existing in the consonants, they ail can be classified as either
“voiced” or “unvoiced” (Ladefoged, 1975). Therefore, a major phonetic distinction between the initial
consonants of English digits is between voiceless and voiced onset. Simitarly, there are two broad
classes of vowels: monophthongs and diphthongs. A maijor distinction between the vowels is between
monophthongat and diphthongat vowel types.

A study on digits by Rudnicky et al (1982) showed different recognition results using the first halves
and the second halves of each ufterance. Their result indicated that the first halves give a better
recognition score than the second halves. Our prefiminary studies (Zhang et al, 1990) showed that
cepstral coefficients which were selected at the peak energy can provide important information for digit
discrimination. In our data this peak always existed in the first haif of each digit. On the basis of these
studies, it was decided to select features from just initial consonants and vowels so that the least amount
of speech data could be used to represent the distinguishing features for digits.
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Figure 1: Energy and zero-crossing density profiles for digit “five”

SELECTION OF ACOUSTIC-PHONETIC FEATURES OF DIGITS

A temporal feature detector was used to detect several key-frames (KFs) from the speech signals of
isolated digits using acoustic-phonetic rules. These rules invoive the classification of spoken digits in
terms of voiced or unvoiced onset and the diphthongisation of the initial vowel. The peaks and valleys
of the energy-time profiles were detected in order to locate KFs which relate to the distinctive vocalic
nature of each digit, and zero-crossing rate was explored to locate a KF to detect the voicing status of
the onset. A small number of frames around these detected KFs were chosen in order to include enough
information to fully encompass the selected features.

Selection of Key Frames to represent vowels

it is well known that the energy time-contour of a speech signal is a valuable parameter to indicate
the temporal location for the extraction of input features in speech recognition (Denes, 1974; Zue and
Schwartz, 1980; Rabiner et al, 1984; Lai et al, 1987; Burr, 1988). In the context of isolated digit
recognition, Burr (1988) showed a good result in his system using a simple feature extraction approach
in which only energy was used in the selection of input features for a neural network. The strategy
adopted in his approach was to select a frame is located at the energy maximum of the spoken utterance

and two additional frames located before and after at a fixed fraction of the maximum energy.

In preliminary experiments (Zhang et al, 1980), an approach similar to that of Burr (1988) was used. A
group of three frames were chosen with one frame at the energy maximum and two frames before and
after which were closest to half this energy. These experiments showed that the maximum energy from
each digit was located centrally over the vowel for a monophthongal digit, or the first vowel quality of a
diphthongal digit. This measure was therefore used in the DSFE approach to locate the first key-frame
(KFp) (Figure 1 and Figure 2) within each digit.

In addition, it has been found that for the eight speakers examined, two peaks often ocour in the energy
time-contour parameter where the spoken digit contains a diphthong. This feature was represented in
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Figure 2: Energy and zero-crossing density profiles for digit “nine”

the DSFE by two key-frames, KFvand KFp1, which were selected respectively at the valley between the
two peaks and at the later peak of the time-contour on right-hand side of KFv. The peaks and valleys
were detected as simple maxima and minima of a smoothed version of the contour. These two frames,
together with the key frame at the overall maximum energy, were used to locate the distinctive vocalic
nature of each digit. Note that when only one energy peak exists the KFvand KFp! are equated to the
end of the analysis record which represents background acoustic ambience.

Selection of Key Frames to represent initial consonants

Zero-crossing density has been widely used to provide important information for distinguishing between
voicelessness and voicing. A voiced consonant has a low zero-crossing density reflecting the presence
of energy at a low frequency typical of voicing, while an unvoiced consonant has a much higher one
as no such low frequency energy is normally present. Generally, both unvoiced and voiced consonants
have a lower energy than a stressed vowel. Sometimes the energy of a weak unvoiced consonant, such
as the initial consonant of “five”, can be very similar to the energy characteristics of the background
noise. However, as the weak fricative typicially has higher frequency energy than background noise,
a high zero-crossing density can often distinguish such a weak fricative from a background noise even
though they canniot be resolved using energy alone. These characteristics were expiored in order to
derive rules to locate and broadly categorise the initial consonant for each spoken digit. Figure 1 and
Figure 2 show the energy and zero-crossing density time-contours across all frames for utterances of
the digits “five” and “nine”, which contain the same diphthongised vowel. From these two figures, it can
be seen that features appear in the initial regions of the zero-crossing profiles which distinguish between
the two digits. The zero-crossing peak which is present for digit five™ is totally missing for digit “nine”.

The algorithm used in the DSFE approach was to search forward towards the beginning of a utterance
until both the amplitude of energy and zero-crossing density were greater than the boundary values of
the energy and the zero-crossing density between background noise and the onset of speech. These
boundary values were pre-determined from statistics of the initial frames of the energy and zero-crossing
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density time-profiles for all utterances of the digit data which were used in our study and the specific
background noise of their recording. A key-frame for initial consonants (KFi) was selected when energy
and zero-crossing density exceeded these values.

Selection of Regions for Each of the Selected Key Frames

Once four KFs (KFi, KFp, KFv and KFp1) were initially defined, it was necessary to determine how
precisely the key frames located distinctive information about the digits. This was done by selecting a
region about each key frame and searching for the minimal size of that region that produced good digit
discrimination. it was found that the system gave the optimal scores for both muttiple speaker dependent
(MSD) and mutltiple speaker independent (MSI) tests when a group of 12 frames were selected as inputs
to a neural network which was designed to recognise all the digits. The group of 12 frames comprised
aregion of 3 frames which started one frame after KF+, a region of seven frames which extended three
frames before and three frames after KFp, and single frames KFv and KFpl. These frames would
appear to include spectral information about consonantal onset, extensive spectrat information about the
initial vowel, and brief spectral information about the trailing part of the utterance.

Data processing and the recognition engine

The digits were originally recorded at a rate of 16,000 samples per second following processing by a
low-pass anti-aliasing fiter with a -3dB point at 7.2 kHz. The data used were resampled at 8,000 samples
per second following digital low-pass filtering to 3.6kHz.

After each utterance was segmented and stored into one file, it was analysed using a frame of 256
sampled-data points (32 ms) and a 50% (16 ms) overlap between adjacent frames. Each frame was
subjected to a 10th order LPC autocorrelation analysis using a pre-emphasis factor of 0.98. The 10
low-order cepstral coefficients were then derived from the reflection coefficients.

Once allframes were processed, a total number of 120 LPC cepstral coefficients for the 12 representative
frames described above were selected for subsequent use as input data for the recognition engine.

The architecture of the multi-layer perceptron used as the recognition engine for the experiments to
demonstrate the DSFE process in action has three-layers with two hidden layers and one output layer
as described in Zhang and Millar (1992). it was designed and trained using the fast training algorithm of
Brent (1991).

EXPERIMENTAL STUDIES

Ten classes of isolated digits from “zero” to “nine” spoken by three male and five female Australian
speakers were selected for this study. Every class of digits was repeated ten times by each speaker
yielding a total of 800 utterances.

Two methods were adopted to choose training and testing data: (1) 50% of data (400 utterances)
comprising five utterances for each class of digit from all the eight speakers were selected for training
and the other 50% were used for testing: this was referred to as the multi-speaker-dependent (MSD) test;
(2) 75% of the speakers (600 uiterances) whose data contain ten utterances from each of six different
speakers (four females and two males) for each class of digit were selected for training and other 25% of
speakers whose data contain ten utterances from each of the other two different speakers (one female
and one male) were used for testing: this was referred to as multi-speaker-independent (MSI) test. No
rotation of the utterances was performed in MSD testing but alf the possible 15 rotatiens of the speakers
in MSI testing were performed.

The experimental results for both MSD and MSI tests are given in Table 1. Each experiment was run
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No.Hidden | No.Hidden | Training | Recog- | Variation
Ezperiments | Units in Units in Time nition of
1st Layer | 2nd Layer (sec) Rate Results
MSD 11 12 1098 93.0% 1.0%
MSI 16 17 1772 92.5% 1.3%

Table 1: Results for multi-speaker dependent and independent tests

several times using different random starting points in the search space of Fast Training Algorithm (Brent,
1991) based MLP training. The results shown in the tables give the mean recognition rate and its range
of variation about the mean over five such runs.

No empirical results were obtained with full-time sampling of the analysis frames. As the average number
of frames was 60, a factor of 5 in the size of the input layer of the MLP would have caused a major
increase in the complexity of the network.

CONCLUSION

This paper has outlined a novel specitication of the input to an isolated digit recognition engine im-
plemented as a neural network where the adoption of a digit-specific feature extraction approach has
significantly reduced the complexity of the neural network architecture required.

The benefit of the DSFE approach to input signal pre-processing can be evaluated by the theory of neural
networks. It has been shown (Brent, 1991) that the number of inputs is the major determinant of the
overall number of connections in a network which can successfully classify its input patterns. The overall
number of connections determine the total number of weights, which in turn determine the computational
complexity of the network. The DSFE approach exiracts the distinguishing features of spoken digits
in order to use a smaller amount of data to represent the digits. The value of DSFE in minimising the
number of inputs to the NNs and hence reducing their internal complexity is therefore seff-evident.
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