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ABSTRACT - An overview is presented of a hierarchical phoneme recognition
system which performs the task in a number of steps: segmentation, manner of
articulation classification and then place of articulation classification. A combi-
nation of knowledge-based techniques and neural networks are used within these
modules.

INTRODUCTION

Automatic speech recognition (ASR) systems designed to handle multiple speakers, a large
vocabulary and a large grammar must be able to recognise speech at the lowest level, typically the
phonemic level, in order to achieve the required versatility. The phoneme recognition approach
has proved popular for building many of the large vocabulary systems in existence {Waibel &
Lee, 1990). Information derived from this basic level is used at higher levels of the recognition
process such as word selection and syntax and semantic analyses (Lee, et. al., 1990, Sagayama,
et. al., 1992, Deller, et. al., 1993).

Fluent speech is composed of sequences of words with little or no pauses between them. Since
this is the natural form of speech for humans, it is preferred to uttering connected isolated words.
However, when speaking fluently, the boundaries between words become difficult to locate as
words blend into one another. Coarticulation is also more prevalent within words as well as
between words. This leads to a sequence of phonemes that is different to that produced in
isolated word speech, but human listeners are still able to understand without difficuity.

A hierarchical approach has been used in this system for recognition of phonemes in fluent speech.
The tasks performed by the recogniser are divided into modules which relate to different acoustic
and phonetic processes present in the utterances thus restricting the classification tasks that
must be performed. The modular approach also allows flexibility in using different techniques
to perform each task. Bayesian classifiers, neural networks and knowledge-based techniques are
used where they can provide the best results. This method produces a versatile system that
may be altered and adjusted as better classifiers are developed.

SYSTEM FRAMEWORK

An outline of the phoneme recognition system is shown in Figure 1. The first processing opera-
tion on the speech signal was the extraction of features relevant to the recognition process. In
this system, the features were: 16 mel-scale filterbank energies, low and high frequency energies
and a ratio of low frequency to high frequency energy.

Each sentence of speech was then segmented into phonemes with careful attention paid to
accurately locating obstruent and sonorant regions. This was performed using a combination of
Bayesian classifiers and Time-Delay Neural Networks (TDNNs) (Grayden & Scordilis, 1994).

"The next stage in the system classified the phonemes into manner of articulation classes and, fi-
nally, determined the place of articulation of each phoneme. Both of these stages were performed
by TDNNs (Grayden & Scordilis, 1993).
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Figure 1: System Framework

SPEECH DATA

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT) was used for all
system training and testing. Only the ‘SX’ and ‘S’ sentences have been used in this work. Table
1 shows the manner of articulation classes used by the system and the phonemes within these
classes (labelled as provided by TIMIT). The phonemes /q/ (glottal stop), /dx/ (flap) and /v/
were also classified as “dip” phonemes as discussed below.

Silence & Closutes  /h#%/ /pau/ [epi/ [bel/ [dcl/ [gel/ [pcl/ [icl/ [kel/
Voiced Plosives /o] [d/ [g/

Unvoiced Plosives  /p/ /t/ /k/

Affricates /ih/ ch/

Voiced Fricatives /2] [zhf [v] [dh/

Unvoiced Fricatives /s/ /sh/ /I/ [th/ /hh/

Nasals [m/ [n] [ng/ [em] [en/ [eng/ [nx/

Liquids N/ Jel/ [t/

Glides /w/ [y/

Vowels Jiy] Jin/ [ix/ [ey/ [eh] [ae[ [aa[ [ao/ [ow[ [ubh/
fuw/ fux/ Jer/ Jax/ [axch/ [ax:] [ah/

Diphthongs Jaw] Jay/ [oy/

Table 1: Manner of Articulation Classes

The phonetic labeling in TIMIT differentiates between the closure and release portions of plosive
and affricate phonemes and classifies the closure regions as /bcl/, /del/, /gcl/, [pel/, [tcl/ and
/kcl/ depending on the voicing condition and the location of the closure in the vocal tract. The
developed system was only required to classify the closures as voiced or unvoiced. TIMIT also
contains three categories of silence: /h#/ (beginning and ending silence), /pau/ (pause) and
/epi/ (epenthetic silence). These were all combined into one silence category in this work.

Among the nasals, the following groups of phonemes were also combined into single phonemes:
/m/ and fem/; /n/, /en/ and /nx/; /ng/ and [eng/. The liquids /1/ and /el/ were combined
as were the glottal fricatives /hh/ and /hv/. The following pairs of vowels were also combined:
/ih/ and /ix/; fuw/ and /ux/; and /ax/ and [ax-h/.

FEATURES
The Time-Delay Neural Networks (TDNNs) required 16 mel-scale filterbank energies for each

frame (Grayden & Scordilis, 1992). These were extracted from TIMIT data by applying a
Hamming window to a 256-point frame of data, taking the FFT and then scaling to mel-scale.
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This window was shifted by 80 samples for each frame of features providing feature vectors which
were 5 msec apart. For input to the TDNNs, adjacent pairs of vectors were then combined to
give 10 msec separation and normalised to [—1: +1].

e by the segment

From the mel-scale filterbank energies, further features were extracted

tion algorithm (Grayden & Scordilis, 1994). These are shown in Table 2.

or us

n
w3

LOW 0-1000 Hz frequency band energy

HIGH 1000--8000 Hz frequency band energy

DIV 57—3—5_1‘;‘9)%{; frequency band energy ratio
DISTANCE FEuclidean distance between mel-scale vectors

Table 2: Manner of Articulation Classes
SEGMENTATION

Segmentation was performed by making use of the acoustic features of phonemes. The segmen-
tation system framework is illustrated in Figure 2. Initially, obstruent and sonorant regions
were discriminated using the LOW and DIV features. This task was called “SPFA vs. ELSE”
discrimination where SPFA was made up of Silence, Plosives, Fricatives and Affricates, and
ELSE was all the remaining phonemes. From a large number of training sentences, a decision
surface was constructed that could be used to classify further sentences. High performance was
achieved in this stage, with most of the errors occurring for short, high-energy obstruents (such
as /q/, /dx/, [v/) when they occurred between sonorants. When not including transient frames
between phonemes, the frame error rate was around 5% (Grayden & Scordilis, 1994).

——
Feature Extraction

SPFA va. ELSE Correctiona

Obstrusnt I I Sonorent |

Figure 2: Segmentation System Qutline

The next step in segmentation was to correct the errors made by SPFA vs. ELSE. The short
obstruents were often clearly evident in the LOW feature as short dips in energy resulting from
brief obstructions in the vocal tract. Thus, the derivative of LOW was taken and examined for
these short events. This algorithm located almost all instances of these phonemes with only
2.5% insertions. The insertions were usually nasals and short liquids.

After locating SPFA and ELSE regions, further segmentation between individual phonemes
was performed. Since the obstruent and sonorant regions were separated, different techniques
could be used to segment within each region. Obstruents have markedly different vocal tract
configurations and manners of articulation so the SPFA phoneme boundaries could be located
by examining LOW and HIGH for any abrupt or large changes. Using this method, around 85%
of obstruent boundaries were accurately located with 8% insertions. Many of the deletions were
due to the inability of the algorithm to locate very short events such as plosive releases.

Sonorant phonemes are very similar to each other so the locating of boundaries between them
was much more difficult. The DISTANCE measure was first examined to locate regions where
the spectrum changed significantly. This provided the locations of the more obvious sonorant-
sonorant boundaries although some insertions within diphthongs were observed.
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The regions between located sonorant phonemes were then examined to locate more subtle
sonorant-sonorant boundaries. Initially, a TDNN that distinguished between nasals, liquids,
glides, vowels and diphthongs (NLGVD) was passed over the features. TDNNs were designed
with the property of being somewhat time-invariant {Waibel, et. al., 1989, Grayden & Scordilis,
1992) so that as the network was passed over the speech, the output indicated the manner of
articulation of the phoneme being examined. When the output changed, a boundary was placed.
This network examined only 60 msec of speech in order to reduce overlap between boundaries.
Then, a TDNN recognising all 24 sonorants was applied within the located NLGVD regions in
order to locate any boundaries between phonemes with the same manner of articulation. The
manner of articulation.network was used before the all-sonorants network as its performance was
higher for the broader manner of articulation classes. The all-sonorants network also required 15
frames of input data as its performance decreased markedly when fewer input frames were used.
Most boundaries could be located in this manner but, owing to the imperfect time-invariance of
the TDNN, a high number of insertions also resulted.

When examining 500 test sentences, the overall segmentation system located 88% of the phoneme
boundaries with 1.4% SPFA vs. ELSE classification errors and an extra 22% of inserted bound-
aries.

MANNER OF ARTICULATION CLASSIFICATION

Classification of the manner of articulation of obstruent phonemes was performed using TDNNs.
Firstly, a neural network that distinguished between silence, plosives, fricatives and affricates
(S/P/F/A) was applied at the phoneme boundary locations determined by the segmentation
module. This TDNN could achieve 87% accuracy on TIMIT testing data. The results from the
network were then arranged in descending order of probability. This was done using the formula

yi+1
ST 1
2AY; T 1)
where M; was manner of articulation class ¢ and y; was the value of output neuron i. 3 (y; +1)

was the total of all the TDNN output values scaled to [0 : 2] as all TDNNs in this work had
outputs in the range [~1: +1] (Grayden & Scordilis, 1992).

Pr(M;) =

The next step was to determine whether the phoreme was voiced or unvoiced. This was done
using a number of TDNNs. Different networks were used for plosives, fricatives and affricates
giving results of 75%, 86% and 87% respectively on TIMIT testing data. It was found that the
TDNNs could provide good voiced/unvoiced decisions provided the manner of articulation was
restricted. Future work will incorporate other techniques to provide more accurate classification.

The task of classifying sonorants into manner of articulation categories was performed by the
segmentation algorithm. Nasals, liquids, glides, vowels and diphthongs were separated using a
TDNN passed over the sonorant regions. The network outputs were then arranged according to
probability in the same way as the obstruents.

PLACE OF ARTICULATION CLASSIFICATION

Obstruent phonemes were classified using further TDNNs {Grayden & Scordilis, 1993). Each
phoneme instance was applied to separate neural networks that distinguished between b/d/g,
p/t/k, z/zh/v/dh, s/sh/f/th/hh and silence types. The silence type network distinguished be-
tween silence, voiced ‘closures and unvoiced closures, while the other networks decided between
the phonemes as shown. The affricate phonemes were not included here as this decision was
already made by the voiced/unvoiced decision. Recognition probabilities were determined from
network outputs and multiplied to the results of S/P/F/A and, if necessary, the results of
voiced /unvoiced decisions. Finally, all the phonemes were combined into a single list in decreas-
ing order of probability and the top phoneme chosen.
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The obstruents detected by dips in low frequency energy within sonorant regions were treated
as a special case when classifying the phonemes. Since the phonemes that appeared in these
locations were only a very small subset of the obstruent phonemes, they were classified using a
TDNN that distinguished between glottal stops (/q/), flaps (/dx/), /v/ and nasals.

The classification of sonorant phonemes was found to be best performed by a one large neural
network. A TDNN was trained to distinguish 24 sonorant phonemes as outlined for the segmen-
tation system. As for obstruents, a list of phonemes is provided with associated probabilities.

PERFORMANCE

Testing was performed using 500 ‘SX’ and ‘SI’ sentences randomly chosen from the TIMIT
testing set. No restrictions were made regarding dialect regions or gender of speakers.

The criterion used for determining correct segmentation was that phonemes located within four
frames (20 msec) of the location indicated by the TIMIT phoneme transcription were correctly
positioned. This width was chosen since the TDNNs were found to be most time-invariant
within this region (Grayden & Scordilis, 1992, Grayden & Scordilis, 1993). Over the 500 test
sentences, there were 12.1% deletions while 21.7% of phonemes detected were insertions. These
results inevitably include some deletion-insertion pairs due to incorrect positioning of phoneme
boundary locations.

The segmentation stage also produced some errors in SPFA vs. ELSE decisions. The errors.in
distinguishing between obstruent and sonorant regions showed in 1.4% of the detected phonemes.
Most of these errors occured for short liquids that were mistaken for ‘dip’ phonemes.

Of the correctly detected phonemes, there were 21.1% manner of articulation classification errors
and a further 21.5% place of articulation errors. This produced a recognition performance of
56% for correctly segmented phonemes and 65% when considering the top two phoneme choices.

Overall, 44% of the phonemes in the TIMIT test sentences were located AND correctly classified.
This increased to 53% for the top two choices. Among the 500 test sentences, the best result
was 70% and the worst was 16%.

DISCUSSION

The number of insertions can be significantly reduced by enforcing tighter restrictions on the
sonorant segmentation performed by the TDNNs but at the expense of more deletions. It is
believed that the following task, that of word hypothesis, would benefit more by having fewer
deletions than fewer insertions.

Manner of articulation classification can be improved by a more sophisticated voiced/unvoiced
decision algorithm. The use of classical techniques and other neural networks should increase this
performance considerably. The use of more neural networks to classify manner of articulation of
sonorant phonemes may provide more information to the word hypothesis system and attempt to
take into account the large variability in duration that is a characteristic of sonorant phonemes
(Edwards, 1992, Hataoka & Waibel, 1990). Place of articulation classification will also benefit
by further investigation of other TDNN architectures to overcome the problems of sonorant
duration variabilities.

The phoneme recognition system presented provides important manner of articulation informa-
tion that will be very useful in the word hypothesis stage. The size of the vocabulary that must
be searched is reduced considerably (Zue, 1985). When the SPFA vs. ELSE regions of a word
are known, a lexical search of the 100,000 word CMU public domain pronunciation dictionary
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(emudict.0.1) can be reduced to a search of 4000 words on average. When manners of articu-
lation are correctly classified, the search reduces to an average of 3 words. This indicates that
the phoneme recognition system developed can provide well for a word selection stage.
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