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ABSTRACT

In this paper, we show how the false acceptance rate depends on inter-speaker distances
and propose a novel technique forthe estimation of False Acceptance Rate (FAR) in speaker
verification. The FAR estimate is based on the statistical technique of “bootstrapping”™. First,
a pairwise FAR is obtained as a function of pairwise inter-speaker distances between each
client and impostor pair. Second the inter-speaker distance distribution is estimated. The
FAR is caiculated by combining these two.

INTRODUCTION

Speaker veriiication systems are evaluated by estimating both the Faise-Rejection (or type-l} error
Rate (FRR) and the False-Acceptance (or type-li) error Rate (FAR). Traditionally, these error rates are
expressed as a function of a threshold which isusedin a verification system to determine the acceptance
or rejection of unknown speakers. The incoming speech signal from an unknown speaker is checked
against his/her claimed speaker identity's model. The result is compared with the threshold to decide
whether to accept or reject the speaker. The threshold can be a distortion measurement, where Vector
Quantisation (VQ) is used to model the speakers, or likelihood, where Hidden Markov Modeis (HMM)
are used. Figure 1 illustrates the FRR and FAR as a function of such a threshold.
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Figure 1: False rejection and false acceptance rates as a function of system threshold.

The FRR can be determined for any speaker (or "client”) by analysing data collected from that speaker,
ideally over a time span of weeks, months or even years. The FAR, on the other hand, can only
be determined from data collected from a sample of other speakers (often referred to as “impostors”).
Ideally, this sample would be representative of the population of potential impostors and should therefore
normally comprise data from a large number of speakers. Because of the difticulties of collecting data
covering a representative population, many previous studies have based their FAR estimation on the
same "client” population (e.g. Rosenberg et. al., 1992; Matsui and Furui, 1992).

There are some shoricomings of this approach. First, the “client” population may not represent the
general population or the population which intend to break info the system. The inter-speaker distance
between the clients and the impostors may be very large, which will lead to a very low FAR, or may be very
small, which will lead to a very high FAR. Therefore, the FAR calculated this way can not be interpreted
easily in terms of the system performance in the real world, or of how the system compares with other
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systems which are evaluated using different populations of speakers. Second, the FAR calculated this
way is an average over all the speakers disregarding the distances between clients and impostors. In
reality, a pair of speakers with large inter-speaker distance will not even try to mimic each other. For
example, a female speaker with a high £y would not try to claim to be a male speaker whose Fy is very
low, if she thought F¢ was a factor.

in this paper, we will show how the FAR depends on inter-speaker distances and we propose a novel
technique for the estimation of FAR in speaker verification. This estimation provides an realistic mea-
surement of FAR.

METHOD

The statistical properties of any decision procedure depend on the distributional properties of the data
collected and uitimately on the distributional properties of the statistics used in the decision procedure.
The False Acceptance Rate (FAR) and False Rejection Rate (FRR) of a speaker verification systembased
for example on likelihoods from a Hidden Markov Model, will depend on the distributional propetrties of
speech. In some instances, theoretical analysis is primarily used to determine these properties. In other
instances this is difficult. The Bootstrap Method (Efron, 1979) substitutes considerable amounts of
computation in place of the theoretical analysis. The distribution of the data is approximated by:

e its empirical distribution as observed in the sample (Non-parametric Bootstrap method); or

e a "smooth estimate" of its distribution (such as the Kernel density estimate (Silverman, 1986))
(Smoothed non-parametric Bootstrap method); or

e a parametric estimate of the distribution of the data (Parametric Bootstrap method).

The statistical properties (in this case the FAR and FRR) of the decision procedure in question are
then determined either by direct computation-or by Monte Carlo simulation from this distribution. The
Bootstrapping technique can be used to estimate the FRR for any client and FAR for any impostor of
any client and is the basis of the procedure described below.

First, we need to find the distribution of inter-speaker distance (6) in the test population and estimate the
distribution function { f(6) ). Second, we need to calculate the FAR for each client-impostor pair and
estimate the false acceptance rate as a function of inter-speaker distance (F'AR(6)). The overall false
acceptance is then calculated as the integral of the product of FAR(§) + f(§) over §. We illustrate these
ideas by some experiments described below.

EXPERIMENT

An accurate estimation of the overall FAR, should be obtained if a database of a representative impostor
population was available. A representative population is one with a free range of inter-speaker distances.
Because of the limitation of resources for collecting a large database to achieve representative status,
we start with a small database to evaluate the approach.

Acoustic data from 24 Australian English speakers (12 male, 12 female) were used. The utterances,
typical of speaker commands to a computer, vary in length from 0.3 to 2.5 seconds. Data from two
recording sessions recorded approximately one week apart were used. There were five repetitions of
each of 30 utterances per speaker in each session.

These data were digitised at 20000 samples per second and down-sampied to 10000 samples per sec-
ond, after bandlimiting to 60 — 4800Hz. 20 mel-frequency cepstral coefficients (MFCCs) were computed
for each frame of 25.6 ms with 15.6 ms overlap between adjacent frames (Millar et. al., 1994).

The following describes the experimental procedure.

o Each speaker was modeled by using a Continuous Ergodic Hidden Markov Model (CEHMM) of
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eight states and eight mixtures per state as described in Ran et. al. (1994). The models were
trained using five repetitions of 30 utterances from the first session.

. s chosen one at a time. 1o be the client and the remaining 23 speakers

Each of the 24 SpeaKerb Wwas Cii0Sen One al a tiime, 10 08 Ine Gt and e remaining <«v 5pearkers
formed the impostors. The test data comprised 150 utterances (5 repetitions of 30 utterances)
from the second session from each of the 24 speakers. Average likelihoods of the test data from
each impostor against client’s model were calculated. This process was repeated with each of the
24 speakers acting as client.

The average likehoods of each client speaker’s data testing against their own models were also
obtained.

For demonstration purposes, the threshold which gave an averaged equal error rate (10% in this
case) of FAR and FRR for verification was chosen.

The FAR of each pair of speakers was calculaied, that is the FAR of each of the 24 speakers io be
accepted as each of the other 23 speakers. Therefore, there were 24 « 23 = 552 FARs (referred
to as “pairwise FAR" below).

e The inter-speaker distance between each pair of speakers in the database was caiculated (referred
to as “pairwise inter-speaker distance” below). This calculation involves the distance between two
speakers’ HMM models. This distance was obtained according to the following formula:

648 = {{(InLikelihood(A’s data|A's model) — InLikelihood( B's data|A's model)}+

[InLikelihood(B's data| B's model) — InLikelihood(A's data| B's model)]}/2

where 6§ 4 p represents the inter-speaker distance between speaker A and speaker B.

This is a stightly modified version of the distance measure of Juang and Rabiner (1984). They
used data randomly generated from the models instead of real data.

RESULTS

Figure 2 shows pairwise FAR vs. pairwise inter-speaker distance (8). The FAR(S) function was
estimated from this data by using the “Gompertz model for growih” (Draper and Smith, 1981).

FAR(6) = 1 — aezp(—Pe )

The parameters o, § and k were estimated using the Statistica software package. The resulting
estimated function was:

FAR(8) = 1 — 1.001198ezp(—3.82984¢~0-39747-%)

Figure 3 presents the estimated FAR function (the continuous cufve) and the data represented by using
the median {represented by boxes). The middle line inside each box represents the median, the bottom
line represents the 25th percentile of the population and the top fine represents the 75th percentile. it
should be noted that F'AR(§) is a function of inter-speaker distance () specifically in this case, for the
threshold which gave an averaged equal error rate. Accuracy in modetling of this curve could be improved
by considering other nonfinear functions and by including the data of the client versus himself/herseff.

Figure 4 shows the inter-speaker distance distribution. The function f(§) was estimated by (i) a Kernel
density estimate (Silverman, 1986), (i) a mixture of two normal distributions and (iii) a mixture of four
normal distributions. Figure 5 shows the estimated distribution of speaker distances.

For the overall FAR calculation, we combined F AR(6,8) and f(8) (8: threshold) as shown in Figure 6.
The FAR for a given distance is the shared area below both curves from zevo up to a given distance.

That is diat
FAR = / FA()f(8)d6
4]
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Figure 2: Pairwise false acceptance rate vs. inter-speaker distance.

where dist represents a given distance; for the overall FAR it should be co. § represents the variable
distance.

The overall FAR for the entire population, using Simpson's rule for numerical integration of above formula,
was calculated to be 17.64% for the kernel estimate of f(6) and 32.06% for the first component of the
mixture of two normals as a mode! of impostor distance. The later would be more realistic, assuming
that only impostors in the first distribution would be likely to try to impersonate the clients.

DISCUSSION AND CONCLUSION

The overall FAR calculated using the proposed method (32.06%) is higher than the FAR calculated using
the other method (10.0%). This was expected, because the FAR calculated using the proposed method
covers whole population with inter-speaker distance between 0 and 25, and it covers a continuous inter-
speaker distance space; whereas the FAR calculated by using the other method is an average of the
FARs from samples of the test population and is discrete.

it is clear from the above description that the FAR depends on the maximum inter-speaker distance
between client and impostor at which it may be expected that impostors would try to break into the
system. Impostor with smaller distances from the actual clients are more likely to try to break in; the
speakers with greater distances are less likely to try to break in.

It is clear that F"AR(8) function aiso depends on the threshold chosen for the system. We could have
a family of FAR(6) functions arising from giving different thresholds (6) as shown in Figure 7. We
therefore denote the false acceptance rate as a function: FAR(S, 6).

In order to evaluate a system for cross comparison purposes, data from a representative population is
needed for inter-speaker distance distribution estimation. [n practice, data can be collected from the
populations with the high likehood of potential impostors to estimate the f(6) and F AR(4, 8) functions
. The overall FAR and the FAR for a given distance can then be calculated. The caiculated FAR covers
the whole population whose distance is less than the given inter-speaker distance, rather than averaged
over the sample population which is often obtained by using other methods.
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Figure 3: Statistical summary of pairwise false acceptance rate and estimated FAR function vs.
inter-speaker distance.
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Figure 4: Inter-speaker distance distribution.
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Figure 5: Estimate of inter-speaker distance distribution. Solid line: Kernel density estimate;
Dotted line: mixture of four normals; Dash line: Mixture of two normals.
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Figure 6: Estimate of FAR(6) and Kernel density estimate of distance distribution.
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Figure 7: Different FAR functions for different thresholds.
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