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ABSTRACT - This paper addresses the task of classifying syliables from continuous speech
info primary stress, secondary stress and zero stress categories using artificial neural
networks. The results compare favourably with other studies performed in this area, while
highlighting the problem of classifying the secondary stress class.

INTRODUCTION

Syliable stress or prominence is often used to communicate important discourse functions such as
word meaning, sentence meaning and intent. All levels within a continuous speech recognition
system can benefit from a syllable stress parser by allowing it to conirol lexical access, constrain
syntactic and semantic parsing, mark new versus old information and discern emphasis or contrast
{Kouper-Kuhlen, 1986, Lea, 1980).

Our previous work on syllable stress (Jenkin & Scordilis, 1993) examined the suitability of artificial
neural networks (ANNS) for the task of classifying syllables into either a primary stress category or a
combined secondary and zero stress category. This work also studied the effect of syllable context on
recognition. The results of 83-89% for two speakers from the DARPA TIMIT continuous speech
database warranted further investigation of the novel use of ANNs. Other studies have been
dominated by statistical methods, such as hidden Markov models (Freij & Fallside, 1988, Wagner et al,
1990) and Bayesian classifiers (Waibel, 1986), or by rule-based systemns {Hieronymus, 1989},

This paper addresses the task of classifying syllables from continuous speech into primary stress,
secondary stress and zero stress categories. A comparative analysis of the different ANN
architectures and learning methods employed for performing this task is given, and the results provide
a solid grounding for future decisions made in the area of ANN syllable stress classification.

SPEECH CORPORA -~ — —

Dialect one of the TIMIT database was chosen to provide the continuous speech sentences. Only the
“si” and "sx" sentences of the fourteen female and twenty-four male speakers were used in this
study. Each sentence was hand-segmented into syllable nuclei and then assigned stress values, as
follows.

Segmentation of syllables

For the purposes of stress or prominence detection, a syllable boundary is defined to be at the onset
of its vowel nucleus because this point is belisved to coincide with the baat of percelved sentence
thythm. The start and end points of the nuclei were subsequently hand-labelied io provide a region of
feature extraction for each syllable.

During segmentation certain decisions were made 1o resolve some of the ambiguities involved with
the syllabification process. For the syllabic consonants /eV, /en/, /env, and /eng/ the nucleus was
included as schwa. For words spoken with a *missing” syllable the nucleus was included as schwa only
if the phonetic context required a nucleus to be present. For example, the word “every® with the
phonetic representation /ehv/ifiy/ did not have the second possible nucleus included, whereas the
word “has® with the phonetic representation /hv/z/ did havs the nucleus included. For words that
have ambiguous syliable counts due to variations in speaker pronunciation, such as “hire® and
*higher”, the inclusion of each nucleus depended upon the particular phonetic representation of the
word.

Labelling of stress values
The TIMIT database contains no specific sentence stress informationi, as opposed to lexical stress

information in the dictionary, so perceptual stress assignments had to be carried out. The eight
sentences for each speaker were printed out on sheets in plain text format, thus having no
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segmentation information. The stress assignment sessions required each listener to mark a 1 above
those syllables perceived as having primary stress and a 2 above those syliables perceived as having
secondary stress, No mark (the default) above a syllable denoted zero stress.The stress values were
first labelled independently by two listeners who followed the procedure outlined in Veatch (1991).
Primary stress is defined to occur on the most prominent syllables which appear to carry the rhythmic

beats of an utterance, while secondary stress occurs on syllables which appear strong in addition to

thess primary beats. This method of assigning stress is recognised as being top-down rather than lsft-
to-right, which highlights the importance of context in the stress classification process, and also
results in primary- and zero-stressed syllables being more common than secondary-stressed syllables.

Analysis of the two independent stress assignment sessions revealed a 60% agreement for the
primary and secondary stress labels across both the female and male speaker sets. The two listeners
then resolved 99% of the conflicting labels in a joint stress assignment session. Those speakers with
an unresolved stress-labelled sentence were designated to form part of the test set.

SYLLABLE PROCESSING

The sentences were downsampled from 16 kHz to 8 kHz by prefiliering the signal with a 9th-order
efiiptic low pass filter and then direcily decimating the filter output. This was done o minimise the
processing requirements of the entire stress parser.

Feature extraction

The acoustic comelates of siress are consistently stated to be derived from pitch, energy and duration
measurements (Fry, 1955, O'Shaughnessy, 1979). The six features used in Jenkin & Scordilis (1993)
were again used in this study. They are: peak-to-peak amplitude integral over nucleus, energy mean
over nucleus, nucleus duration, syilable duration, maximum pitch over nucleus and mean pitch over
nucleus. These features were chosen also with an emphasis on minimal processing by using only the
vowel nucleus of the syllable. Note that for the schwa nuclei only the syllable duration feature was
non-zero.

The amplitude and energy features are calculated using a 16 msec rectangular window with 50%
overlap. The nucleus and syliable duration measurements are derived from the nuclei hand-labels.

The pitch tracker used to find the mean and minimum pitch features is based on the algorithm
described in Medan et al (1991), with the maximum possible pitch range limited from 40 Hz to 500 Hz.
The signal data is first passed through a 4-4-5 FIR fitter, approximating a lowpass filter, to remove
unnecessary harmonics. Then the piich value is found by cheosing the first cross-correlation pealk
that exceeds a ceriain threshold. This threshold is adapted after each pitch value is found, and the
possible pitch range is adapted after 3 successive voiced segments fo reduce computational time and
improve pitch tracking. Pitch is calculated every 10 msecs, which is five times the minimum pitch
period allowed.

Normalisation

The feature vectors are normalised before being presented fo sach ANN. For each sentence the
maximum and minimum values of each feature are determined. These values are then used to linearly
normaliss the associated sentence features onto the range [-1.0, 1.0].

Context

Due to the relative nature of siress knowledge of surrounding syllables, or context, needs to be
incorporated into a syllable stress classifier (Jenkin & Scordilis, 1993, Moore & Roach, 1993). Our
previous work showed that limited pre-syllable context outperformed limited post-syllable context,
therefore only pre-syllable contexts are examined here: the two syllables previous to the syllable
being classified (2-0) and the three syllables previous to the syllable being classified (3-0). Larger
contexts would tend to increase stress recognition, however there is a trade-off between the
inclusion of context and the training and classification time required for a more complex data space.
For those syllables that had part or all of their context undefined the context feature vectors were set
to zero.

732



NEURAL NETWORK ARCHITECTURES

The mutti-layer feedforward network had three output neurons, one for each class, and two hidden
layers whose size depended upon the data set being learned. Syllable context is represented
spatially in the network by simultaneously presenting the feature vectors for the syllable context and
tha syllable to be classified to the input. Thus there were eighteen input neurons for context 2-0 and

twenty-four input neurons for context 3-0.

The two recurrent networks used had three output neurons, one for each class, and one hidden
layer. Syllable context is represented temporally by feeding back, for each successive forward pass,
the hidden layer activations in the Elman network, while the Jordan network feeds back the output
layer activations with an accumulative decaying history. The recurrent networks had six input neurons
since only one syllable's feature vector was presented to the network for each pass.

The weights and bias terms for all architectures were initialised to lie in [-1.0, 1.0], using the same
pseudo-random sequence for each training run. The learning rate was set 16 0.02, the momentum
rate to 0.3. For the Jordan network, the decay term was set to 0.7. The sigmoidal activation function
was used, with the output neurons being set at >=0.9 for the desired class, <=0.1 for ths other
classes. Standard backpropagation was used to frain the feedforward network, while backpropagation
through time (Werbos, 1890) was used to train the recurrent networks (with the output error set to 0
for intermediate passes).

Each training configuration was set to run for at least 3000 epochs fo give sufficient time to monitor
the general bshaviour of the network.

CLASSIFICATION EXPERIMENTS

For the purposes of investigating the ability of ANNs to classify stress, three data sets were generated
from the female speaker group, the male speaker group and the entire speaker group. First, two
female speakers and four male speakers were chosen to form an unbiased test set. No syllables from
these speakers' sentences were seen by the network during training. The remaining speakers were
then used o form the training set, with every sixth syllable in the training set being extracted to form a
biased test sat. The biased test set contains syllables that weren't presented to the network for
training, but have come from the same sentences (same environment and speaker) as those syllables
used in'the training set. TheTesultant counts of syllables in each set is given below in Table 1.

Primary Stress | Secondary Stress Zero Stress
Female training set 270 172 544
Female biased test set 56 30 112
Female unbiased test set 55 37 120
Male training set 464 302 919
Male biased test set 80 51 2086
Male unbiased test set 108 68 202
Al training set 725 456 1420
All biased test set 145 99 291
All unbiased test set 163 105 322

Table 1. Counts of syllables in each stress class for the different speaker groups and data sets

The female speaker group was used as the basis for comparing the different configurations examined,
while the male and entire speaker groups were employed to give the performance for the best
configurations found. Initially, the networks were trained using batch learning to provide a standard for
the other possible configurations. For the female set with context 2-0 the best overall performance
was 72.2% for the biased test set and 72.3% for the unbiased test set, however the secondary stress
performance was only 0% and 40% for the two test sets while the primary stress performance was
66% and 63%. For the two different recurrent network architectures the unsatisfactory results of 56%
and 56% were obtained for the two test sets. Even the inclusion of a second hidden layer in the
Jordan network did not improve these results. Other configurations yielded a similar performance for
the recurrent networks so all results discussed hereafter will concern the feedforward networks only.
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As can ba seen from the examples in Table 2, the increase in performance of one class usually results
in a decreasa in the performance of one other class, or sometimes both of the remaining classes. The
most common effect noticed during the training of the network was the gradual increase in
performance of the secondary stress class with a degradation in performance of the primary and zero
stress classes.

Epoch Primary Stress| Secondary | Zero Stress Qverall

Number Rate Stress _Rate Rate Rate
280 83.63 0.00 87.50 70.89
460 61.81 5.40 95.83 70.89
920 56.36 40.54 87.50 70.89
1340 63.63 10.81 94.16 71.36
1720 63.63 43.24 84.16 71.36
6400 58.18 27.02 90.00 70.42
9280 70.90 27.02 84.16 70.42

Table 2. Recognition rates (%) of each stress class for the female 2-0 standard unbiased test set

To attempt to compensate for the lack of training examples in the primary and secondary stress
classes the primary training data was duplicated and the secondary training data triplicated. This
resulted in a worse performance of 71.2% and 68.9% for the two test sets, with the primary class stili
classified poorly and the secondary class not at all. This method was insufficient fo combat the focus of
learning on the unstressed class in the network. The two other methods of training concerned when
the weights were to be updated. The first method (update 33) initially updated the weights every
three examples and then increased this update size by three every twenly epochs, whereas the
second method (update 55) initially updated the weights every five examples and then increased the

update size by five every twenty epochs.

Dus to the performance of the secondary class being less than 10% for three of the results and 0% for
the rest of the results, Table 3 below focuses on the primary and zero stress classes while still
retaining the overall rate of the three classes in the final column. Most of the results were found within
the first one hundred epochs of training, before each network started to leam the secondary stress
class.

Context and Learning Method Test Set Primary Zero Two Class | Overall
Stress RateiStress Rate[Stress Rate]  Rate
female 2-0 standard biased 66.07 94.64 85.11 72.22
unbiased 63.63 94.16 84.57 71.69
female 2-0 compensate biased 69.64 91.07 83.92 71.21
unbiased 61.81 93.33 83.42 68.86
female 2-0 update 33 biased 75.00 90.17 85.11 72.22
unbiased 74.54 92.50 86.85 71.69
female 2-0 update 55 biased 76.78 90.17 85.71 72.72
unbiased 74.54 92.50 86.85 71.89
femnale 3-0 update 55 biased 76.78 91.96 86.90 73.73
unbiased 72.72 92.50 86.28 71.22
male 2-0 standard biased 78.75 94.17 89.86 76.26
unbiased 82.40 892.57 89.03 73.01
male 2-0 update 55 biased 86.25 90.77 89.51 75.96
unbiased 87.03 80.59 89.35 73.28
male 3-0 update 55 biased 87.50 91.74 90.55 76.85
unbiased 87.03 90.59 89.35 73.28
all 2-0 update 55 biased 75.17 87.62 83.48 68.03
unbiased 82.20 91.61 88.45 72.88
all 3-0 update 55 biased 74.48 87.97 83.48 68.03
unbiased 80.98 92.54 88.65 73.89

Table 3. Best feedforward ANN recognition rates (%) of each stress class for different configurations
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DISCUSSION

Interestingly, as the feedforward network progresses through the learing epochs, it classifies more
and more secondary stresses correctly (while still having a high primary and zero stress training rate)
so it does appear that the network can “leam” all three classes. Initially more than half of the

i ifi i S bur dho modainsle dthan b
misclassified secondary stress examples are seen as primary stress by the nstwork, then the

misclassifications divide evenly between the primary and zero stress classes as training continues.

The results for the primary and zero stress classes are good compared to related work in the stress
recognition area, but the issue of concemn here is the performance of the secondary class. The
number of stress levels is constantly disputed within the linguistic community and most of the other
studies have concentrated on the stressed/unstressed classification task (or in some literature strong
versus weak classification). This begs the question of whether secondary stress can ever be classified
by any fype of stress parser, and whether it is necessary to distinguish primary stress from secondary
stress with respect to the pragmatic uss of the parser. Lieberman (1965) found that if segmental
information was removed from the spesch signal a listener could only distinguish between stressed
and unsiressed syllables, not between degreos of stress, which suggests that only two degrees of
stress may have acoustic correlates independent of vowel quality. If the secondary stress class is
combined with the primary siress class, to form a binary stressed-unstressed classification of syilables,
the initial perceptual stress assignment sessions described earlier has the agreement result increasad
to 80%, whereas the increase is not as significant if the secondary stress class is combined with the
zero stress class.

In examining the feature statistics for the three classes it is clear that the primary and secondary stress
classes are closer than the secondary and zero stress classes. The mean of each feature is given in
Table 4 below. However, there is still significant overlap between the secondary class and the other
two classes. In our previous study, the result of ~90% for primary siress versus secondary and zero
stress suggests that there is overlap aven for the binary class decision, let alons for the ternary class
decision required here.

Primary Stress | Secondary Stress Zero Stress
Peak-to-peak amplitude 51859 35788 13323
Energy mean 7359 6273 33805
Nucleus duration 1061 906 504
Syllable duration 2067 1893 1387
Maximum pitch 170 161 134
Mean pitch 115 116 104

Table 4. Means of features in each stress class for the female speakers

The results from Table 3 reveal that context 3-0 is not significantly advantageous over context 2-0,
however it is possible that more surrounding knowledge is required for secondary stress to be leamned
and recognised. in examining the different neural network configurations we found that adaptive
training improves performance over batch training by not allowing the larger zero siress class io
dominate the weight changes. Furiher investigation into the difference in performance for the female
and male speaker sets is still required.

CONCLUSION & FURTHER WORK

The discussion about the bad performance of secondary stress points to the possibility that perhaps
secondary stress requires more context to be deduced compared 1o the primary stress and no stress
classes, particularly since secondary stress is more subjective in nature. This seemed evident after
discussions about the siress assignment sessions revealed that listener KLJ tended to use rhythm
over other acoustic cues, whereas listener NSN tended to use the intonation coniour fo assign stress.
This initially resulted in KLJ assigning more primary stresses than NSN. Perception of secondary
stress may therefore be dependent upon the particular acoustic cues a speaker prefers to utilise. As
Veatch (1991) points out, even consistency for one person assigning three levels of stress to the
same utterance on separate occasions can be as low as 87%.

In-order to fully benchmark the use of the feedforward ANNSs for siress classification, a comparison of
hidden Markov models and rule-based systems for the same data needs to be done.
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To ultimately create a self-contained stress parser, an automatic segmentation procedure will be
necessary. The pitch algorithm currently in use can be used to segment speech into voiced/unvoiced
regions, then energy values can be compared for different frequency ranges fo sagment the voiced
regions into vowel nuclei and voiced consonants.
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