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ABSTRACT - Although the HMM approaches have been extensively studied in the context of
speech recognition for nearly two decades, there still appears to be room for improving the dis-
crimination capability within the HMM framework, from both training side and recognition side.
The algorithm proposed in this paper integrates the concepts of variable frame rate and dis-
criminative analysis to modify the conventional Viterbi algorithm, in such a way that the steady
or stationary signal is compressed, while transitional or non-stationary signal is emphasized
through the frame-by-frame searching process. The usefulness of each frame is decided
entirely within the Viterbi process and needs not to be the same for different models. To evalu-
ate this algorithm, we tested a speech database of @ highly confusable E-set English letters.
With 5 state and 6 mixture components, the conventional HMM baseline system only delivered
the recognition accuracy of 73.9%. Through the use of the algorithm proposed in this paper,
the recognition accuracy was increased to 82.5%.

1. INTRODUCTION

The hidden Markov modelling (HMM) has become a predominant technique for automatic speech rec-
ognition due to its modeling power to characterize the statistics of speech signai and its ability to inte-
grate different sources of knowledge (acoustic, phonetic, lexicon, syntax, atc.) within a unified
searching mechanism. Although it has been successful in dealing with a wide range of speech recogni-
tion tasks, there is a noticeable weakness inherently resided in the conventional HMM framework. In
fact, due to its inadequacy in addressing the issues of discrimination and robustness, the HMM usually
fails to attain high performance for difficult vocabulary. The reason for this limited discrimination capa-
bility is two-fold, i.e. the training algorithm based on the maximum likelihood estimation (MLE) and the
uniform frame-to-frame searching mechanism.

Assuming we have N speech classes to model, € = {C,C, ...C,} and for each class we have a set
of samples used as training data, it is well known from Bayesian decision theory that the MLE
approach will lead to the asymptotically best recognition performance, if both the underlying structure

(form) of the source models P (O|7»i) and the prior probability P (C,) are correct ones. However,
the assumptions made by the HMM are generally not true in speech signal context. These incorrect
assumptions are numerous, such as the first-order Markov chain, the form of HMM topology, the inde-
pendent observation events (acoustic feature vectors), the form of probability density function on each
state, and the diagonai covariance matrix in the Gaussian probability density function, etc. Due to the
fact that MLE based HMM is estimated from a training database, the effect of the incorrect HMM
assumptions imposed on speech may be emphasized through the training phase. Therefore the MLE
approach dose not lead to the result of minimizing recognition error.

Secondly, the conventional frame-synchronous recognition performed by the Viterbi algorithm is also
lack of discriminative power due to its linear and uniform process. The best global likelihood resulted
from each model via dynamic programming (Viterbi alignment) is in fact simply determined by sum-
ming up the local likelihoods along the best state sequence. However, since this simple sum-up local
likelihoods along the best state sequence treats the local likelihood from each frame equally and inde-
pendently, it fails to make any use of distinct difference clearly demonstrated in speech signal, e.g.
rapid and dynamic change in some regions, quasi periodic and stationary in other regions. Therefore, it
may not provide a good discriminative capability for classifying words in an acoustically and phoneti-
cally confusable vocabulary, such as nine E-set English letters.

Thus there appears to be room for improving the discrimination capability within the HMM framework,

from both training side and recognition side. In this paper we present a nove! algorithm to modify the
conventional Viterbi algorithm based on the likelihood distribution of each state of HMMs.
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2. VARIABLE FRAME RATE ANALYSIS

The first module in any recognition system is a front-end, which extracts from an incoming utterance an
adequate set of parameters, such as commonly adopted mel frequency cepstral coefficients {MFCC)
and its first order time difference (AMFCC). Given the physical constraints of human vocal contract and
phonetic structure of a language, it is clear that in speech signal, there exist some regions where
changes in acoustic characteristics is dynamic and rapid, while in some other regions, the signal is
much more stationary or quasi periodic. Therefore, it is expected that some successive feature vectors
will be very similar, while some other successive feature vectors will be quite different, hence it is pos-
sible to utilize a similarity metric and then process each frame in the vector sequence in a discrimina-
tive way.

Conventional variable frame rate analysis (Bridie et a/ 1983, Ponting et al 1991) is to retain all the input
feature vectors when they are changing most rapidly and omit the high proportion when they are reia-
tively constant. The typical techniques used to achieve this is through calculation of some pre-defined
similarity measure, such as Euclidean distance, between two feature vectors. Specifically, assuming a

vector sequence is represented by X = {xl,xz, ...xN} and the distance between previously

selected frame i and following frame j is represented by D (i, j) , the decision whether the frame |
should be kept or drop is based on a pre-calculated threshold T in Figure 1.

Although the idea behind this approach is to enhance the important region of speech signal by remov-
ing out some highly stationary par of signal, it is ad hoc and lacks a clearly defined optimality criterion
to perform the task. Furthermore it is not compatible with the stochastic framework of the HMM. There-
fore, this variable frame rate analysis is not very useful in the current speech recognition systems.. In
fact, even the concept of the variable frame analysis is quite ignored by most researchers working on
HMM based speech recognition.
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FIGURE 1. Flow diagram of the conventional frame compression approach

3. CONVENTIONAL VITERBI DECODING

The most popular mechanism adopted in speech recognition systems is based on the Viterbi algo-
rithm. It calculates the accumulated likelihood across each state and each model in a frame synchro-
nous manner. For each frame of signal (acoustic feature vector), the Viterbi algorithm updates and
propagates all the accumulated likelihoods according to the assumption of the first-order Markov chain,
the HMM topology, and the local probability values. Thus the Bayes decision to recognize an utterance
within Viterbi searching context can be formulated as

Apost = argmfx {P(XJX)}



(P(X‘.)P(ngi)) ’ T
1ogp(xilxj = log\ —pgy— ) =+ max logP (X, 5|h) :c+i; logb,, (x)

where the prior language model is assumed to be constant ¢ (no grammar), and the best state

sequence is represented by S, . = {q}, q,, ...4;} for model A

Thus the decision making in a non-grammar isolated word recognition system is approximated as

T A
Apest = argm}tzx Z logh qx,- (x,)

t=1

it is important to note that the above formulation is not conventional, in the way that the recognition
score dose not depends on transition probabilities. The reason for that is because the transitional prob-
abilities play an insignificant role due to their dynamic numerical range compared with tocal likelihood,
thereby they can be ignored altogether without any notable effect on recognition accuracy (Song et al
1993).

Further examining the above formulation gives more insight of the recognition mechanism resided in
the HMM framework. Assuming the local likelihood in each state of each model as an observation

event, i.e. ¥ = {yl, Yos ...yT} , it becomes clear that the discrimination function formulated after
time-state warping through the Viterbi decoding is a simple sum-up discrimination function,

ie.g(Y,A) = Zyi , A is defined as an HMM space. This simple sum-up through the frame-to-

frame and state-to-state likelihood propagation in the Viterbi algorithm has two problems, i.e. firstly, the
estimation error from the non-discriminative states may offset the likelihood difference from discrimina-
tive states, secondly, the difference in likelihood generated from stationary frames may be more impor-
tant than the difference generated from non:stationary frames. In fact, when tested on a highly
confusable vocabulary consisting of nine English E-set letters, the conventional HMM approach with 5
Gaussian mixture components, 5 states and 24 dimensional feature vector (cepstrum + Acepstrum)
only produced word accuracy of 61.7% on telephone data (Kitagiri et a/, 1993).

It seems to exist some room for us to reduce the recognition error rate by modifying the conventional
recognition process presented above. In fact, if we view the HMM as a sophisticated mapping which
transforms a sequence of observation events (acoustic feature vectors) to another sequence of obser-
vation events (local fikelinood), it is possible to design a more powerful linear discrimination function in

the forme of g (Y, A) = zwiyi, where W = {w,, w,, ...w;} is a weighting function. Recently

?
a promising and powerful method called generalized probability decent (GPD) with an optimality crite-
rion of directly reducing the recognition error rate on training data was under intensive investigation
(Juang ef al, 1993). Although the mathematics involved in the GPD is quite complex, it is not difficult to
see that the optimized weighting function will emphasize the rapid changing signal resided on discrimi-
native states and de-emphasize the stational signal from non-discriminative states.

4. VITERBI DECODING WITH DISCRIMINATIVE ANALYSIS

it is well known that speech signal is generally a non-stationary process which can be approximated by
a short-term stationary chain. From the probability perspective, a segment of signal which is locally sta-
tionary will be characterized by a same probability distribution function. This characteristic is well repre-
sented within HMM, i.e., local stationarity of speech signal is assumed to be located on same state
through self-loop transition, with non-stationarity being represented by state-to-state transition (Gurgen
et al, 1993).

Although the degree of stationarity or redundancy embedded in a sequence of acoustic feature vectors
X = {xl, Xo .‘.xN} is fixed and only depends on speech signal, it is very difficult, if not impossible,
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o be measured through conventionat distance metric, such as Euclidean distance, between two fea-
ture vectors. Thus frame compression manipulated in the feature extraction module might not be an
effective solution to improve the discrimination capability of a recognition system. Much more insight

can be gained if we analyze the sequence of the vectors within the HMM framework and evaluate the
degree of stationarity based cn each HMM model individually. In doing so, it is more reliabie to decide
whether X, is a rapid changing signal or a stationary piece of the surrounding signal. Thus it is not dif-
ficult to see that a larger consistency is met with the stochastic pattern matching paradigm, which is the
key aspect in applying this broad methodology.

To evaluate each frame of signal (vector) in a sensible way, we can align this vector to its most likely
state and evaluate it from that point based on the transition pattern and the link {o its previous frame.
There are a number of ways to decide the most iikely state on which x, is located. To add the new fea-
ture of discriminative analysis into the well established Viterbi decoding algorithm, the most likely state
is determined for each model at each frame, i.e.

A, best AL A, .
s, "= arg max 87 (7)) 8/ (D) =  max PXy, Xy o XS5 Sy o8, = tlk)
i #52% .

itis not difficult to see that the index of the most likely state corresponds to the acoustic vector x, for
different model needs not to be the same. This gives a larger degree of freedom for the HMMs to pro-
cess signal in a unified decision making criterion. Once the most likely state within a model A is
located, the effectiveness of a vector x, evaluated by that model is decided by the following rules.

Rule 1 - transition type on the best state of each model

The stationarity of a vector is indicated by the seif transition loop within a HMM as
) Ao A A A
5" (sbest) = m?x g (@) bsbm (X,) =38 * (sbest) bslzen (xt)
where 1° denotes previous frame index which is an active frame and contributes to the accumulated

likelihood.

X, is referred to as reference frame with respect to x,. it can be seen from the above equation that
the transitional probabilities are not used. The reason for this modification has been mentioned earlier
in this paper.

When the transition on the best state s, o is self-loop, the degree of stationarity with respect to its

previous frame needs to be further examined. Only when the current frame is sufficiently close to the
previous frame in a sense of likelihood, one can safely say that the information it carries is insignificant
and therefore can be compressed.

Rule 2 - local log likelihood distance

The local likelihood logb}‘,- (x,) is ameasure of the probability that vector x, is generated from state i of

model A . X, is considered to be stationary with respect to previous reference frame X0, if the best
state determined by the rule 1 is of a self transition and the difference in magnitude between two local
likelihoods is below a model-state-dependent threshold, i.e.

Y Ao
logbg,,., (1) ~logbg,, " (1°)] < T (s

where 7}”(%”1) is a model-state-dependent threshold (MSDT) estimated from HMM training stage.

bexr)

The recognition process within the Viterbi algorithm needs to be modified. if any of the above-men-
tioned conditions (rules) are broken, the feature vector is considered active and therefore is used to

update all the accumulated likelihoods within the model A, the frame index ¢° is updated to be t How-
ever, when both rule 1 and rule 2 are valid, X, is not used to update the accumulated likelihood on any
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state of the mode! A. That is, all the internal likelihoods keep the values decided at the frame °. In
this case, the effective number of signal frames with respect to the mode! A is decremented by 1 and
the active reference frame index ° remained unchanged with respect to model A . To determine the
rank in the recognition, the global iikelihood resuited from each HMM should be normaiized with its
effective length.

In the HMM training stage, the model and state dependent threshold 7}v (i} is estimated. The basic
assumption here is, once again, that frames of a stationary signal should exhibit similar probability
characteristics within HMM, i.e. they should be located on the same state, as well as their local likeli-

hood should be close to each other. The conventional Viterbi algorithm is used to align acoustic feature
vectors to the best sequence of states based on a set of well trained HMM. Without loss of generality,

assuming ihat number of vectors located on state jof modei A is »,. The number of different absolute
differences in logarithmic likelihood between any two vectors x,, X, is N;x (N, 1) /2. These local like-
lihood differences (in magnitude) in each state of each model can be viewed as a sequence of discrete
observation events ¥ = {yl, Yo ...yM}, and be modeled through non-parametric or parametric

way. In our preliminary implementation, the mean and the standard deviation of each sequence is esti-
mated individually for each state of each model, i.e.

1 1
H= g2, O fnz -2

Since the mean vaiue is ciose to zero due to the relation of £{y-z} = Hy=R, Y and z are two random

variable, the model and state dependent threshoid is formulated as 71(1') = ec)”(i) , where q is a coef-
ficients determined empirically from training data.
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FIGURE 2. Block diagram for (a) Training phase (b) Recognition phase

5. EXPERIMENT SETUP

To evaluate the proposed algorithm, we chose a highty confusable vocabulary consisting of nine Amer-
ican English alphabet letters, i.e. (b, ¢, d, &, g, p, I, v, z}. The speech material used in our experiments
was the standard database TI-46 distributed by NIST. it was constructed in multi speaker, isolated
mode and contained 16 speakers: 8 males and 8 females. Each speaker produced 10 utterances of
each letter as training data and 16 utterances of each letter as testing data. All speech tokens were
recorded in a sound proof condition at sampling frequency of 12.5 KHz. To be compatible with tele-
phone bandwidih, the original speech data were down-sampled to 8 kHz. The analysis condition and
the system parameters for the based line system is presented as follows.

Front End:
Telephone bandwidth
Time window 30 ms with frame shift 10 ms
MFCC derived from FFT + Mel filter bank + DCT + Cepstrum liftering
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Acoustic feature vector: 12 MFCCs + 12 AMFCCs
HiviM:
Type: Continuous density HMM
Topology: 5-state left-to-right.
PDF type: mixture of 6 Gaussian pdfs with diagonal covariance.
Segmental K-means clustering.
Additional parameters:

Model-dependent state-dependent threshold 7 (iy for each model and each state.
A conventional HMM recognition system is based on the one described in (Song et a/ 1993}, with 5 left-
to-right states and 6 mixture components per state being used to get a baseline performance. The rec-
ognition accuracy based on this set of models and conventional frame-synchronous Viterbi decoding
algorithm was for the multi-speaker testing database. The comparison of the baseline performance
with the result using the algorithm proposed in this paper in illustrated in Table 1.

TABLE 1. performance comparison for baseline HMM recognizer and discriminative
HMM recognizer.
5 state 6 mixture component HMMs
Approach correct | mis-recognized | recogniti
samples samples accuracy (%)
Baseline HMM 1692 598 73.9
Discriminative HMM 1889 401 82.5

6. CONCLUSION

The algorithm proposed in this paper is inspired by the concepts of the variable frame rate and discrim-
inative analysis on the sequence of accumulated likelihood. The basic assumption of this algorithin is
that the score contribution of each frame of signal matched with each HMM model should be treated
discriminatively and depends on previous frames. Unlike either the conventional variable frame rate
analysis which compresses signal frames based on a simple spectrum distance metric at the front-end
stage, or the Viterbi aigorithm which processes each frame of signal in an uniform way, this algorithm
examines each frame of signal within the recognition module with enhanced discrimination capability.
Whether this frame will contribute to the final likelihood score will be decided by each state of a model
and the degree of stationarity. In this algorithm, a particular frame could be rejected by a model, while it
is considered useful by another model. if a particular frame is considered redundant to a model to
which it is evaluated, the effective length of the signal (number of frame) will be decremented by one
from the initial length. Therefore, the final lengths of signal resutied from different models need not to
be the same. This processing is more powerful and gives greater degree of freedom to explore the
inherent stochastic modelling power within HMM.

The experiment presented in this paper was carried out by the author of this paper at the Speech Tech-
nology Research Group, Department of Electricat Engineering, University of Sydney.
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