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ABSTRACT

The optimal Least-Entropy predictor for DPCM exact sound compression is used to
compare and evaluate the performance of predictors computed using such criteria as Least-
Squares and Least-Absolute-Deviations. Results indicate that performance of Least-
Squares predictors is sensitive to the data particularly as the dynamic range is increased.
This has been addressed previously by breaking the data into smail blocks and calculating
new Least-Squares predictors for each block. We show that while this leads to considerable
improvement, a single Least-Entropy predictor over the whole data set often performs
favourably. An improvement for the Leasi-Squares predicior is suggested where a smali
percentage of the data is discarded in the least-squares modelling. This often gives a
predictor considerably closer to optimal. The Least-Absolute-Deviations predictor is found to
perform very close to optimai in general, suggesting that the distribution of errors is well
approximated by a Laplacian distribution.

INTRODUCTION

in a typicai sound waveform, il is expecied that there is a significant degree of correlation between
nearby waveform samples. If the waveform is encoded in Pulse Code Moduiation (PCM) format as a
stream of discrete waveform amplitudes, there will be some degree of redundancy in the encoding,
and hence a longer message length for the data than is necessary.

Differential Pulse Code Modulation (DPCM) is a method which pre-processes the data to reduce
correlation between nearby samples. To encode a particutar sample, a prediction is made from
previously encoded samples. The difference between this prediction and the actual sample value is
encoded as an ‘error’ value. it is only necessary to transmit this error value, since the decoder can
form the same predicted value using previously decoded samples. Some form of entropy coding
such as arithmetic coding can then be used to encode the errors (Witten, Radford, Neal and Cleary,
1987).

This paper addresses the problem of how to form a prediction for a given sample. A linear predicior
forms a prediction for the current sample as a linear combination of n previous samples. Such as
predictor is said to be of order n. The coefficients of a simple linear predictor are fixed for all sound
files. The simplest example is the Delta predictor, where the previous sample is the prediction for the
current sample. Another exampie is the Mean predictor where a sample is predicted as the mean of
the n previous samples.

Better results are achieved where a predictor's coefficients depend on the given sound file.
Coefficients are chosen to minimise some criterion. A common criterion is Least-Squares (LSQ),
where the squared sum of errors is minimised. Such a predictor is optimal where the distribution of
prediction errors is Gaussian. However, we show that this is often not the case with sound data, and
that for 16 bit data Least-Squares predictors are too sensitive to anomalies in the data which can
cause large prediction errors.  Also, there is no guarantee that increasing the order of a Least-
Squares predictor will resuit in an improvement.

When DPCM is used with sound, often the prediction error distribution appears Laplacian. in this
case, the optimal criterion to minimise is the sum of absolute error values. This is the Least-
Absolute-Deviations (LAD) predictor. Such a predictor is far more difficult to compute than a Least-
Squares predictor however. (Denoel and Solvay, 1985) proposed using a modified version of the
Burg algorithm to compute the LAD predictor. In our work we use the lteratively Re-weighted Least
Squares (IRLS) algorithm (Ruzinsky and Olsen, 1989).
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If we choose predictor coefficients to minimise the entropy of the prediction errors, the predictor is
optimal, no matter what the prediction error distribution is. Since the entropy indicates the number of
bits per sample required to encode the errors using entropy encoding, a Least-Entropy (LENT)
predictor gives the shortest possible codelength for a given predictor order n. This is optimal from a
compiession point of view, and aiso in the sense that the predictor coefficients represent the best
possible model for the data under the constraint of linear predictive coding and the assumption that
prediction errors are independent and identically distributed. Furthermore, it is guaranteed that an
increase in predictor order must equal or decrease the entropy of the prediction errors. The LENT
predictors are also computed using the IRLS algorithm (Tischer 1993).

Since the LSQ criterion is far less expensive to compute, we atternpt to use it to generate predictors
closer to optimal. The method suggested in (Tischer 1993) is to discard the small percentage of data
that leads to large errors in the LSQ modeliing process (Censored Least Squares or CLS). In most
cases, this produces a predictor much closer to optimal. Finally we observe the effects of breaking
the data into blocks and calculating new LSQ predictors for each block.

LEAST SQUARES PREDICTORS AND BLOCKING

it is well known that LSQ regression can be overly sensitive to some small amount of data that does
not fit the body of the data (Rousseeuw and Leroy, 1987). In the case of LSQ predictors, a very
small percentage of noisy samples can badly effect performance. This is particularly true when the
dynamic range of the data is increased. For sixteen bit data, two adjacent samples can differ by up to
65535. Such large differences are badly predicted with a linear predicior and cause large errors.
This can lead to predictors that perform poorly since the weight of an observation depends on the
square of the prediction error.

To counter this problem in the past, blocking has been used (Robinson, Garofolo and Fiscus, 1994).
The data is split into small blocks usually of about 128-256 samples. For each block, a new Least-
Squares predictor is computed and a block of prediction emors produced. We assume that the set of
blocks of prediction errors are treated as a single set of prediction errors and are entropy encoded as
such. Note that there is the overhead of transmitting new predictor coefficients for each block.

If beiter predictors are used, it is possible to increase the size of the blocks and thus reduce the
overhead of transmitting coefficients. In the extreme example, a single LENT predicior over the
entire data set will usually perform comparably to LSQ predictors using blocking. However, LSQ
predictors are very easy to compute. If we can improve the LSQ predictor to be less sensitive to
anomalies in the data, we can use larger blocks without losing performance, and reduce overhead.

A way to overcome the sensitivity of LSQ regression is a method calied Censored Least Squares
(CLS) (Tischer, 1993). A small percentage of the data that appears to cause large prediction errors
is discarded during the LSQ modelling. A simple criteria for rejection of data is to discard samples
beyond some arbitrary distance from the mean value. Any sample that is predicted using a
previously rejected sample is also rejected. This way, the effect of outliers in the data is reduced.
The results in section 5 were generated using a distance of 2.6 x the standard deviation of the data.
In most cases, this lead to a rejection of 5-10% of the data. We attempt to show that using CLS
predictors may allow us to increase blocksizes from 256 to 4098, without any significant loss in
performance. Therefore, the cost of transmitting block predictor coefficients is reduced sixteen-fold.

TEST DATA

Three distinct classes of sound data are tested, namely speech, music and artificial sound effects.
Speech data from the “NIST Speech Disc 1-1.1 October 1990° CD-ROM is used for testing. It is all
sampled at 16,000 Hz. and is 16 bits per sample. File length varies from about 35,000 to 80,000
samples. A speech file has a male or female voice speaking a whole sentence.

To test music data, we sampled music from the following compact discs: Dire Straits- “Money For
Nothing” (DS), Matt Finish- “Short Note” (MF), Nirvana- “Never Mind" (NV) and The Cure-
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“Disintegration” (CU). The sampling was done at a variety of rates and in both 8 and 16 bit formats.
File sizes are generally large, often greater than 500,000 samples.

Thirdly, some artificial sound data found on the Siticon Graphics Indy is used. These sounds include
a range of car noises called “Screech” and “Crash”. These sound effects are of interest because we
suspect they are badly modelled by a linear predictor.

RESULTS OF SINGLE PREDICTORS

The following tables show the results of tests on the data described in section 3. The predictors
tested are LSQ, LAD and LENT. Each predictor is tested with order 3,6 and 8. Included for each file
tested is its original entropy and the resulting entropy when the simple order 1 Delta predictor is used.
For comparisons, some tables contain results in brackets from other tables.

LSQ Predictor on 16 bit data

FILENAME | FILETYPE | ORIGINAL DELTA LSQ PREDICTORS
ENTROPY ENTROPY ORDER 3 ORDER 6 ORDER 8
MF Music 22 kh | 12.803 11.118 12.328 11.6583 11.409
NV fMusic 44 kh | 14.646 12.988 12.366 13.108 12,356
DS Music 22 kh | 13.809 12.581 13.617 15.604 13.348
DS Music 44 kh | 13.851 11.826 11.648 13.415 12.634
satl Speech 8.548 8.089 7.943 7.873 7.822
si1467 Speech 10.280 9.281 9.115 2.070 92.07¢
sx325 Speech 9.448 8.014 7.878 7.894 7.924
Crash Effect 10.090 9.991 13.253 12.714 13.284
Screech Effect 13.320 10.430 8.845 10.830 9.504
TABLE 1. LSQ Predictors: Prediction Error Entropies for 16 bit data

These results indicate that the LSQ predictor badly models 16 bit music data. In many cases,
increasing the order from 3 to 6 results in a significant loss in performance. In some cases even,
better performance is achieved using the Detlta predictor. For speech data, LSQ generally performs
petter. However, there are still cases where increasing predictor order reduces performance. For the
sound effects data, the Least-Squares predictor fails badiy possibly due to the occurrence of large
prediction errors.  Note the improvement in performance when the sampling rate of the file DS is
increased from 22khz to 44khz.

LSQ Predictor on 8 bit data

FILENAME | FILETYPE | ORIGINAL DELTA LSQ PREDICTORS
ENTROPY ENTROPY ORDER 3 ORDER 6 ORDER 8
MF Music 22 kh | 4.865 3.259 3270 3.250 3.265
NV Music 44 kh | 6.740 5.050 4.298 4.066 4.032
DS Music 22 kh | 5.902 4.660 4.662 4.656 4.657
DS Music 44 kh | 5.902 3.880 3.634 3.568 3.569
CuU Music 8 kh | 4.866 4,163 4.151 4.029 4.002
TABLE 2. 1.SQ Predictors: Prediction Error Entropies for 8 bit data

Again there are cases where the LSQ predictor fails to improve on the Delta predictor. However, in
most cases a reasonable improvement is made. it is rarely beneficial to increase the predictor order
beyond 8.
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LAD Predictor on 16 bit data

FILENAME  FILETYPE LAD PREDICTORS
ORDER 3 ORDER 6 ORDER 9
MF Music 22 kh | 10.919  (12.329) | 10.709  (11.653) 10732 (11.409)
NV Music 44 kh | 12,183  (12.366) 11.821  (13.108) 11.655  (12.356)
DS Music 22 kh | 12,520  (13.617) 12.503  (15.604) 12.504  (13.348)
DS Music 44 kh | 11.368  (11.649) 11.223  (13.415) 11,113 (12.634)
sal Speech 7.884 (7.843) 7.819 (7.873) 7.767 (7.822)
$i1467 Speech 9.094 (9.115) 9.034 (9.070) 9.027 (9.070)
sx325 Speech 7.686 (7.878) 7.694 (7.894) 7.660 (7.824)
Crash Effect 12459  (13.253) | 12492 (12.714) 12506 (13.284)
Screech Effect 5.571 (8.845) 5.355 (10.830) 5.276 (9.594)
TABLE 3. LAD Predictors: Prediction Error Entropies for 16 bit data

{LSQ Entropies shown in brackets for comparison)

The LAD predictor significantly outperforms the LSQ predictor in all tests with 16 bit data. It displays
robustness o noisy data (see Crash and Screech). In the music data where the LSQ predictor failed,
LAD performs reliably. Increasing predictor order usually produces equal or better results. Even with
speech data where the LSQ predictor performed weil, the LAD predictor still makes some
improvement.

LAD Predictor on 8 bit data

FILENAME | FILE TYPE LAD PREDICTORS
ORDER 3 ORDER 6 ORDER 9
MF Music 22 kh | 3.160 (3.270) 3163 {3.250) 3.151 {3.265)
NV Music 44 kh | 4205  (4.298) 4.064 (4.066) 4.028  (4.032)
DS Music 22 kh | 4.601  (4.662) 4.587  (4.656) 4.585  (4.657)
DS Music 44 kh | 3.581 (3.634) 3516  (3.568) 3.504 (3.569)
cuU Music 8kh | 4.151 (4.151) 4.024  (4.029) 3.896  (4.002)
TABLE 4. LAD Predictors: Prediction Error Entropies for 16 bit data

(L.SQ Entropies shown in brackets for comparison)

Again, the LAD predictor always improves on the LSQ predictor for 8 bit data. However, in many
cases the improvement is smalil.

LENT Predictor on 16 bit data

FILENAME | FILETYPE LENT PREDICTORS
ORDER 3 ORDER 6 ORDER 9
MF Music 22 kh | 10.710  (10.919) 10.638  (10.709) 10.636  (10.732)
NV Music 44 kh | 12.164  (12.183) 11.804  (11.821) 11649  (11.655)
DS Music 22 kh | 12,520  (12.520) 12.503 (12.503) 12.504  (12.504)
DS Music 44 kh | 11.360  (11.368) | 11.223  (11.223) 11.078  (11.113)
sal Speech 7.881 (7.884) 7.816 (7.819) 7.767 (7.767)
si1467 Speech 9.094 (9.084) 9.034 (9.034) 8.027 (9.027)
sx325 Speech 7.686 (7.686) 7.658 (7.694) 7.660 (7.660)
Crash Effect 9.991 (12.459) | 9.991 (12.492) 9.991 (12.506)
Screech Effect 5.571 (5.671) 5.355 (5.355) 5276 (5.276)
TABLE 5. LENT Predictors: Prediction Error Entropies for 16 bit data

(LAD Entropies shown in brackets for comparison)

293



The above table shows a comparison between LAD and LENT predictors. For speech and sound
effects data, these are virtually the same. Only for 16 bit music data does LENT show some
improvement over LAD. In some cases the improvement is reasonable, but generally quite smalf.

LENT Predictor on 8 bit data

FILENAME | FILE TYPE LENT PREDICTORS
ORDER 3 ORDER 6 ORDER 8
MF Music 22 kh | 3.155  (3.160) 3.138  (3.153) 3.138  (3.151)
NV Music 44 kh | 4294  (4.205) 4.063  (4.083) 4.028  (4.028)
DS Music 22 kh | 4.601  (4.601) 4.586  (4.587) 4.585  (4.584)
DS Music 44 kh | 3.578  (3.581) 3515 (3.516) 3.504  (3.504)
CU Music 8kh | 4.151 (4.151) 4.024  (4.024) 3.995  (3.985)
TABLE 6. LENT Predictors: Prediction Error Entropies for 8 bit data

(LAD Entropies shown in brackets for comparison)

For 8 bit music data, the LENT and LAD predictors produce nearly equivaient resulis.

RESULTS OF BLOCKING AND CLS PREDICTORS

Single CLS Predictor Results on 16 bit data

FILENAME | FILE TYPE CLS PREDICTORS
ORDER 3 ORDER 6 ORDER 9
NV Music 44 kh | 12.207 (12.366) 11.848  (13.108) 11.681  (12.356)
MF Music 22 kh | 11.113  (12.328) 10.984  (11.653) 10.935  (11.409)
DS Music 22 kh | 12.559 (13.617) 12.549  (15.604) 12.549  (13.348)
DS Music 44 kh | 11.514 (11.649) 11.356 (13.415) 11230 (12.634)
Screech Effect 5572  (8.845) 5.358  (10.830) 5.281 (9.593)
TABLE 7. CLS Predictors: Prediction Error Entropies for 16 bit data

(LSQ Entropies shown in brackets for comparison)

For 16 bit music data and sound effects data, the CL.S predictors show significant improvement over
LSQ. In some cases above, the improvements are remarkable considering the simplicity of the
censoring process. For the 16 bit speech data, we were unable to achieve improvements since the
LSQ predictor performed very well on this data anyway.

§5.2. L8Q vs. CLS Predictor Results Using Blocking

FILENAME ! FILE TYPE | BLOCK BLOCK BLOCK
SIZE = 256 SIZE = 4096 SIZE = 4096
(LSQ) (LSQ) (CLS)

MF Music 22 kh | 10.378 10.854 10.579

DS Music 22 kh | 12.398 13.327 12.417

DS Music 44 kh | 11.177 11.864 11.209

Screech Effect 5.659 7.167 5515

TABLE 8. Order 3 LSQ Predictors and CLS Predictors:

Prediction Error Entropies for 16 bit data

(Using Blocksizes of 256 and 4096)

This table firstly shows how the LSQ predictor deteriorates as the blocksize increases from 256 to
4096. However, it then shows that for blocks of size 4096, CLS predictors can be used to produce
results similar to LSQ predictors with blocksize 256. Furthermore, the reduction in overhead is
significant. The following table shows the same thing, but with order 6 predictors.
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FILENAME | FILE TYPE BLOCK BLOCK BLOCK
SIZE = 256 SIZE = 4096 SIZE = 4096
{LSQ) (LSQ) (CLS)
MF Music 22 kh | 10.152 10.829 10.398
DS Music 22 kh | 12.379 13.789 12.376
DS Music 44 kh | 10,923 12.057 10.963
Screech Effect 5.358 6.890 5.251
TABLE 9. Order 6 LSQ Predictors and CLS Predictors:
Prediction Error Entropies for 16 bit data (Using Biocksizes of 256 and 4096)
CONCLUSIONS

The LSQ predictor is found to perform unreliably where large errors may occur, particularly with 16 bit
data. A better, but more computationally expensive predictor is the LAD predictor. In nearly alt
cases, it is found to perform very closely to the optimal LENT predictor. This verifies our
cbservations that prediction error distributions can be well approximated by a -apiacian distribution.

Since the LSQ predictor is easy to compute, it is worth attempting to improve it's performance. The
CLS predictor is shown to give remarkable improvements in some cases, simply by discarding data
that appears to cause large prediction errors. This predictor can be used with blocking to allow larger
blocks to be used without losing performance, and thus reduce ovehead.

FURTHER WORK

In future research, we intend to study techniques for encoding the prediction efrors. Rice encoding
(Rice, 1991) is a simple coding technique that is appropriate for prediction errors with a Laplacian
distribution.  Better results should be achieved using arithmetic coding on individual blocks of
prediction errors. It is first necessary to study ways of accurately and compactly describing a block’s
prediction error distribution, since for each block, this information must be transmitted. In particular,
the grey-encoded bitplane method (Tischer, Worley, Maeder and Goodwin, 1993) for encoding a
distribution will be used.
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