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Abstract

A phoneme-based Gaussian mixture VQ codebook can improve the conven-
tional DHMM system performance significantly. In this paper, an optimization
method for the phoneme-based VQ codebook is proposed. The experimental re-
sults shown that the optimized phoneme-based VQ codebook leads to both the
improvement of system performance and the reduction of system complexity.

INTRODUCTION

In a phoneme-based Gaussian mixture codebook [1], each phoneme of each sex of
speakers in the training sequence is represented by a codeword. This means that we
treat the phonemes as data classes in the clustering by VQ. The number of codewords
in a codebook, codebook size, is normally larger than the number of phonemes in the
training sequence. The reason for this is that the phoneme space is only a subspace of the
speech space. In other words, the speech signal space includes not only the phonemes,
but also other sounds between the phonemes and silence or background noise. We
generate a Gaussian mixture codebook in which some of codewords are determined by
the individual phonemes and others by the rest of training sequence.

Investigations have shown that in phoneme-based Gaussian mixture codebook gen-
erated by the Expectation-Maximization (EM) algorithm [9], too many codewords are
concentrated near the origin, the region of silence or background noise. For example,
in a codebook of size 123, there are more than 10 Gaussians in this region. It is not
reasonable to classify the silence into so many classes. Instead, the silence should be
treated as one cluster, This not only reduces the system complexity, but also increases
the cluster separability for the recognition.

In this paper we propose a phoneme-based VQ codebook optimization method to
construct a minimal codebook to represent the complete speech data. In our exper-
iments, a typical 5-state discrete HMM (DHMM) speech recognizer was employed for
isolated word recognition of the letters of the English alphabet. The training and testing
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method DHMM PBVQHMM
codebook size | 64 | 128 | 256 | 64 128 | 256
accuracies 7.9 1835 86119271952 (94,1

Table 1: The accuracy rates of English alphabet recognition.

data were obtained from the TI46 database. The best results showed a 37.6% decrease
in the codebook size while the recognition accuracy was increased by 1.32 percentage
points.

PHONEME-BASED VQ FOR DHMM

The database used for training and testing was the TI46-Word Speaker-Independent
Isolated Word Corpus from the National Institute of Standards and Technology (NIST)
in the USA. The database comprises 46 isolated words, 10 digits, 10 computer command
words, and 26 letters of the English alphabet. The data is sampled at 12500 Hz and
digitized to 14 bit resolution. There are 16 speakers (8 male and 8 female) in the database
and each word was repeated 26 times by the speakers. The first 10 repetitions were used
as the training set and the remaining 16 as the testing set.” Here we use the subset of
the 26 letters only. The FFT of the speech data was computed every 10 ms and a 25
ms Hamming window was used. The FFT coefficients were binned into 12 Mel-spaced
values to produce 12-dimensional feature vectors corresponding to the frequency range
from 60 to 5000 Hz.

In the training procedure for the phoneme-based VQ codebook, the phonemes were
manually extracted from the speech waveform of training sequence. There were 24
phonemes from this data for each sex. In the training procedure we estimated the
parameters of two Gaussian models for each vowel or consonant, one for the data from
the male speaker and one for the female speaker. For each diphthong, mixture model
comprising two Gaussians were produced by the EM algorithm. This was based on the
observation that the diphthong data look like two overlapped Gaussian clusters. From
all the phonemes processed, we constructed 58 Gaussian models. The EM algorithm was
employed to produce a Gaussian mixture model which included not only the Gaussian
models for the individual phonemes, but also the Gaussian models which represented the
sound between the phonemes and the background noise. The Gaussian mixture model
was used in a traditional DHMM system as a V() codebook. For comparison purposes.
Gaussian mixture models with 64. 128, and 256 components were generated. In each of
them, there were 58 components from the individual phonemes.

Table 1 is the comparison results of conventional discrete HMM (DHMM) recognizer
and this phoneme-based VG HMM (PBVQHMM) recognizer. It is obvious that the
improvement of PBVQHMM system is significant.
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Figure 1: A projection of phoneme-based codebook

PROJECTION OF PHONEME-BASED VQ CODEBOOK

Figure 1 is a projection of the codebook on a two dimensional plane, in which the
X-axis represents the average value of the first six components of the vector while the
Y-axis represents the average value of the remaining components. The phoneme-based
codebook was generated from the training sequence, and had 58 codewords from the
phoneme modeling. Each symbol in Figure 1 indicates the position of the correspond-
ing the phoneme. The capital letters indicate the positions for male speakers and the
lowercase letters the positions for female speakers. To avoid confusion, we only use one
letter pair to present the two code words from each diphthong. The circles represent the
remaining codewords not derived from the phoneme modeling. These were generated
by the EM algorithm from the whole training sequence. The picture is a representation
of the speech space, at least from a two dimensional point of view. Considering the
positions of the phonemes, we can say that the different classes of phonemes. vowels,
stops, fricatives, and nasals, occupy separate regions in the space. It should be noted
that most codewords not derived from the phonemes lie in the left-bottom area of the
picture near the origin. These codewords represent the background noise or silence.

[t appears that there are too many codewords concentrated in the region near the
origin, It is not necessary to use so many Gaussian models to represent silence. How-
ever. when we reduce the codebook si

in the EM training procedure, the recognition
accuracies decrease. This is because there are reductions in both the codewords near the
origin and also in the codewords in the phoneme area. The codewords in the phoneme
arca are very important for the recognition system since they represent the detailed
sound between the phonemes. Table 2 indicates the changes of recognition accuracy



codebook size 30 90 100 110 128 140 200
accuracies 92.15 | 93.27 | 93.60 | 93.26 | 95.24 | 93.80 | 93.27

Table 2: The accuracy rates of English alphabet with different codebook size.

corresponding to changes in the codebook size. It shows that the best results are ob-
tained when the codebook size is 128 and both increasing and decreasing the codebook
size result in the system performance degradation.

OPTIMIZATION OF PHONEME-BASED VQ CODEBOOK

From Figure 1 we can see'that more than 40 of the codewords in the phoneme-based
codebook with 128 codewords are concentrated in the region near the origin. From a
probability point of view, this is reasonable since the background noise contributes many
more data points than any phoneme and has a greater variance than the speech data.
This causes many Gaussians to be filted to the noise. From a speech recognition point of
view, however, it is undesirable to have a large number of Gaussians representing silence
and background noise. In fact we want a codebook in which each codeword efficiently
represent a certain speech data class. ldeally, we need only one Gaussian to represent
all the data associated with silence. It makes sense not only for reducing the codebook
size thereafter reducing the system performance complexity, but also for reducing the
confusions in the recognition process thereafter improving the recognition accuracy.

We propose a method for optimizing the phoneme-based V() codebook. First we
extract the silence data from the training speech data files. Then we estimate a single
Gaussian model for the silence. To make sure no more Gaussians are generated in this
region during the EM training procedure, we force all the silence data points to belong
to the silence Gaussian. To avoid the data points associated with the sound between the
phonemes being corporated into the silence Gaussian, this procedure must be based on
the previous analysis which gives the definition of the range of silence data points. In
this improved training procedure, we will produce an improved codebook in which each
codeword efficiently represents a certain speech data class.

Figure 2 is a projection of the optimized phoneme-based VQ codebook. Comparing
it to Figure 1, we can see that there is only one codeword in the left-bottom corner in
this codebook while the codewords representing phonemes are unchanged.

Table 3 shows the results obtained from the experiments with optimized phoneme-
based Gaussian mixture codebooks. The database and speech feature preparation are
same as that described in Section 2. The first row indicates the codebook sizes before
optimization and the second row shows the codebook sizes after optimization. For ex-
ample. the codebook with 80 components was reduced to 74 components, the codebook
with 90 components was reduced to 77 components, and so on. The third row shows the
percentage reduction in codebook sizes. The fourth row gives the recognition accura-
cies of the recognizer with the optimized phoneme-based Gaussian mixture codebooks.
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Figure 2: A projection of optimized phoneme-based codebook

original codebook size 80 90 100 110 128 140 200

optimized codebook size 74 7 78 80 81 30 131

codebook size reduction | 7.5% | 14.4% | 22% {27.3% | 36.7% | 35.3% | 34.5%

recognition accuracies 89.94 | 92.88 | 93.27 | 94.13 | 96.56 | 95.24 | 92.49

accuracy improvment | -2.21% | -0.39% | -0.33% | 0.86% | 1.32% | 1.44% | -0.78%

Table 3: The performance results of the system with optimized phoneme-based code-
books

Finally, the improvements of system performance are shown in the fifth row, where
negative value indicates a degradation of system performance.

CONCLUSIONS AND DISCUSSION

From these results we can make the following conclusions.

The PBDHMM speech recognition system with an optimal codebook can reduce the
system performance complexity which includes both the computational cost and storage
cost. For example, in the best result obtained in the case of original codebook size 128,
both the computational cost of VQ process and storage cost are reduced by 36.7%.

The optimization of phoneme-based codebook is an efficient way to improve the
system performance. In the best result obtained in the case of original codebook size
128, the recognition accuracy was increased by 1.32 percentage points. In other words,
the recognition error rate is reduced by 28%. Compared with the conventional DHMM



system of which the results were shown in Table 1, we obtained a recognition accuracy
gain of 13.1 percentage points or 80% recognition error rate reduction.

The optimal codebook size for isolated letter recognition should be in a range of 80 to
90. From Table 2 we can see that in this range the system performances are reasonably
good and the accuracy improvments are positive.
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