A WORD LATTICE PARSING ALGORITHM
FOR NATURALLY SPOKEN ENGLISH

Russell J. Collingham and Roberto Garighano

Avrtificial Intelligenee Systems Research Group
School of Pogineering and Computer Science

University of Dharham, Fngland

ABSTRACT A systent s deseribed which provides a prototype speech recognition aid
for deal students in university lectures. A dynanie programming algorithm builds a lattice
of likely spoken words from the phonene form of naturally spoken Enghish. A mixture of

rehr and best firs

breadth fi search incorporating a novel set, of “anti-grammar” rules
to penalise granunatically incarreet or graanmatically bad sequences of words is used to parse

the waord Tattice and prodicee the hest recognised word sequenee,

INTRODUCTION

This paper provides an introduction to the syntactic sub-system of AURAID: a speech recognition aid
for use by deal students i leetures. This suhosvstem produees a useful word recognition level from
a continuous sequence of phonenes as eonld b provided by o continnous speech phonemne recognition
systenr Chovently, this unil consists of o bwo stane process: dynanie progratmming and trace back

(parsing). The dynanie programining stiee matelios o continnans sequetiee of corrupted phonenies with
a dictionary to produce a word Lutiee This stave also determines suitable points in the phoneme input
that indicate o likely end of woword, this effenvely breaks the word Tatticee into wseries of chunks cach
spanning several spoken words. The trace haek stage performs o reverse (and oceasionally a lorward)
parse using a mixture of breadth first seaveling and best first scarching incorporating a novel set of
“anti-gramniar” rules to penalise granatically hicorrect or grammatically bad sequences of words.
AURAID lias a vocabulary of 2200 words and carrently warks in real-tinie using a simulated continuous
speech phoneme recoguition systein (imodeled o the performance of the DRA {UK) Speech Rescarch
Unit's Armada system). The phoneme error vate provided by this sinielation is approximately 26%.
Word recognition rates of approximately 85% have been achieved on sections of the simulated data using
unrestricted speech. The simulated data ts taken fromn real university lectures on the subject of software
engineering.

In order to make the recognition task shmpler. and to achieve higher rates of recognition, many speech
recognition systems have taken the approach of restricting what can be spoken, not only in terms of
the different words that can be spoken bhut also the order that the words may be spoken. While this
approach is appropriate for specific applications. for examphe interrogating acdatabase where the nwnher
of queries is limited. imposing a restrictive grannmar on what can be spoken is certainly not appropriate
for the kind of systewn we are developing. Newther o5 10 possible (o define a complete grannuar for
spoken Enghsh (nnrestricted. naturally). Fartler, the chunks of words present in the word lattice are
not nécessarily divided tuto complore seutenees bt more likely sentenee fragments. We have taken the
opposite approach by developing i =et of rules thit can be nsed to cheek the syatactic incorrectness of
sequences of words. We call these svitactie rnbes e anti-grionmar™ as the rules are used to penalise
certain syntactic constructs rather than identiiv syntactically correet sequences. An anti-grammar rule,
for example, may penahse the occurrence of two articles in succeession, or the word “an” being followed
by a word that doesn’t start with a vowel

This paper will discuss hoth the dynamie progriviming and frace back stages of AuRAI and present
the fatest results of the current bplementation

254

DATA PREPARATION

Four lectures from cach of two lecture courses in different aspects of software engineering were recorded
on to audio cassette. The text of these lectures was typed into a computer as accurately as possible
to include partial words, “ums”, “errs™ and the like, and an indication of the location of short and
long pauses. The phoneme representation for each word in each lecture was obtained from the Ozford
Aduvanced Learner’s Dictionary. The phoneme representation of each lecture was then corrupted in order
to accurately reproduce the performance of a continuous phoneme recognition system by using real data
figures obtained during the assessment of Armada (Browning et al., 1990). These corrupted phoneme
lecture files form the basis of the simulation.

DYNAMIC PROGRAMMING

Dynamic programmiing is a mathematical concept that has been used for many years for multistage
optimal decision calculation. In the field of speech recognition (where it is also know as dynamic time
warping) it was used initially in isolated word recognition systems for comparison of segments of speech
with stored word templates. This was extended to continuous word recognition by storing each template
as a series of frames which were then compared to the segments of speech. A detailed description of
dynamic programming for speech recognition can be found in (Silverman and Morgan, 1990). There
are several dynamic progranming algorithins in existence differing in inemory use and execution speed.
The most significant difference is hetween ecarly decision (or one stage/level/pass) and deferred decision
{or two stage/level/pass) algorithms. In a deferred decision dynamic programming algorithm, no output
is forthicoming until the taltker cither pauses or finishes speaking. Early decision algorithis, however,
produce their output as the tatker is speaking. i theory, deferred decision algorithims should perform
better than carly decision algorithins as they have more information available. ‘This, lowever, has not
yet been proven.

By assuming a continuous stream of phonemes as its input, AURAID does not deal with frames or
segments of the speech signal. ITowever, dynamic programming can be used to match stored template
words, made up of a series of phonemes, with the input phonemes. From the above description of the
available dynamic programming algorithms, it can be seen that AURAID requires a fast, early decision
algorithm.

Each dictionary word is composed of one or mmore plionemes. A typical dynamic programming algorithm
uses a matching routine to measure the distance or dissimilarity between the p’th phoneme of the w’th
word and the £’th input phoneme. The dynamic programming score S(w,p,1} is defined for any word
phoneme and input phoneme as the sum of the phoneme distances for the best way of aligning the first ¢
phonemes of the input with any possibie sequence of words followed by the first p phonemes of the w’th
word, in other words, the best path to (w.p.t). Thus the score is not only a function of the position.
in the input and also of the position in a word. but also depends on the other words and the way they
might explain parts of the input. Trausitions between words are always from the end of one word to
the beginning of other words., Thus the score for the start of cach word depends on the score of the
end phoneme of the best word of the previous input phoneme. The distance or similarity score between
phonemes can depend of a variety of things. and varies from algorithm to algorithm. Most algorithims
group phonemes into classes according to their confusahility. The phoneme classes used by AURAID are
based on manner of articulation and are shown in Table I, The distance between phonemes within the
same class is then less than that hetween phonemes from different classes. This can be measured, for
example, by absolute valies or logaritlims of the probability of confusing one phoneme for another hased
on experimental data.

The Bridle dynamic programming algorithm (Bridle ef al., 1983) uses the following equations:

Stw, 1,4) = dist(rw, 1,1} + n,](i(n){5(1‘,N(7'),t -1} (1)
refit(w

S(w, p,t) =]]‘]’)ill] JAStw,p—a,t = 1)+ P(a) + dist(w,p, 1)} (2)
a=0,1,2
where R(w) is the set of words that are allowed to precede the w'th word, N(r) is the length in phonemes
of the r'th word, and P(a) is a time distortion penalty that allows, for example, phonemes to be repeated
or single phonemes to be skipped. Tn this case #(w) will be the whole dictionary as AURAID does not
use a gramimar to restrict word order.

255

Class | Name [Phonemes

0 Plosive pbtdkg

1 Affricative tS dz

2 Strong I'ricative | s z § 2

3 Weak Fricative | £ v TD h

4 Liquid/Glide lrwj

5 Nasal nmN

6 Vowel iIE{AQOUu3Ve
al el ol alU @U 1@ e@ U@

Table 1+ Phoneme Classes used by AURAID

The Ney dynamic programming algorithm {Ney. 1984 uses the following equations:

S L) = dist(u Loy i S(e 10— 1 SOr N(e) 1 — 1) 1 r € R(w)} (3)

Stw,p,t) =min{ 0.5 disi(w,pt) + Slw,p~ 1,1);
2 - dist(w,p ity 4+ S(w,p,t~1);
dist(w, p.) + S{w,p~1,1-1);
4)

These two dynamic programming algorithms do not perform as well as our own algorithm. They fall
down because they do not attempt to model the kinds of errors that actually occur. In the algorithm
that we use, we explicitly model the kinds of errors that may occur, both within words and between
words. That is, we consider inserted phonemes, deleted phonemes, substituted phonemes and word final
phoneme deletion. We also found that long words are unduly penalised because of their length and are
not recognised as well as they should he. To overcome this inadequacy we normalise the distance scores
according to the length of the word being considered. The equations for our dynamic programming
algorithm are:

Stocd) = win 2y L0 (e
sub_penw L) . Sl A — .
My T, e N D
del_pen subopen(w. 1 . o
i SrN(ry-1,t -1
ZrraE TR AL A)
(8
S(w,p,1) = min{ ”;:‘(_l]"'j” Ml/"]);/}:(”l;'p' 2! + S(w,p—-1,1-2)
sub_pen{w,p,t) .
e + Stw,p—1,t-1);
del_pen sub_pen(w. p, t)
> -2,1-1
0e) L{w) Stwp=2t-1))
(6)
3 if (phoneme_length{w) = 1)
where Liw)={ 4 if (phoneme dength(w) = 2)

phoneme_length(w) otherwise

The three penaltics, ins_pen, del_pen and sub.pen each return absolute values independent of the par-
ticular phoneme being considered, with the exception that the sub_pen for two phonemes of the same
class is less than that for two phonemes of different classes. 1t was found that this approach to phoneme
distance caleulation produced better results thaw nsing logarithms of the probability of confusing one
phonenie for another.

256

In both Equations 5 and 6 it can be seen that a mininmum score choice is to be taken between either the
last input phoneme being an insertion error, the current input phonermne being correct or a substitution
error, or the previous phioneine of the current word being matched (or the final phoneme of the previous
best scoring word) being deleted. This truly represents the events that could possibly occur.

The three dynamic progranuning algorithms ontlined above have heen evaluated against each other.
The word lattices produced by execnting each algorithin on a small portion of cach of the corrupted
lecture files have been compared to determine the best algorithm. For each input phoneme a word
lattice contains a list of the hest seoring words that ewd a2t that point. This list could have an absolute
length, for example the 25 top scoving words ending at that particular point in the input, or it could
be determined by the closeness of the word scores. for example a list made up of all words having
a score within 10% of the top scoring word at that particular point. The ranks of each of the real
spoken words was determined at the point where they should have been recognised in cach word lattice
produced by each algorithin on each lecture file. The algorithins were then evaluated against each other
by determining the percentage of real spoken words within the, say, top ten candidates of their particular
word lists. The results of this evaluation are summarised in Table 2.

Lecture { Lecture 2 Lecture 8 Lecture 4
Dynamic 57 words 72 words 58 words 52 words
Programming | % ranks within top | % ranks wilhin top | % ranks within lop | % ranks within top
Algorithm 0] 0] 70 0] 20 70 0] 20 70 0] 20 70
AURAID 91.2 1982 T100.0 [503 T 058 [100.0 | 93.1] 96.6] 100.0 | 885 | 962 | 965
Nev 912 | 93U | 965 03 86.2 | 89.7 | 3.1 | 923 | 92.3 | 96.2
Bridle 56.1 71.9 TR Ti6 T6.4 1 569 | T2 86.2 | 51.9 | 65.4 76.9

Table 20 A Comparison of Three Dynunic Progranmning Algorithms

TRACE BACK (PARSING)

The word Tattice produced by the dynamic prograniing stage needs to be broken into chunks of man-
ageable size for the traceback stage. Fach chnnk must finish at the end of a word. At certain points
during the processing, ends of words can be identified, either by pauses in the speech, or by “comron
consent” of best words at different input phonemes. This latter category of word ends can be determined
by keeping a tally (or vote} of the previous word ends suggested by the best word at each input phoneme.
When this vote count reaches a specified level it can be deduced, with a certain amount of accuracy, that
a definite end of word exists. At this point a trace back over previous word ends beginning at that point
can take place either to the start of the recognition, or to the previous trace back, and the memory used

to store this information freed.

A standard trace back often expericnces difficulty because of the large plhoneme error rate present. Votes
by sequences of short words can often incorrectly identify the location of word ends, we therefore ignore
those votes for word cnds that are close by (i.e. neighbours). Using a standard trace back algorithm
from (Bridle et al, 1983) or (Ney, 1984) on the word lattices produced even by AURAID’s dynamic
programming algorithin on an example corrupted phoneme sequence would produce the following word
sequence as output, a word recognition rate of approximately 57%. This figure is lower if one of the
other two dynamic progranmming algorithms is used to gencrate the word lattices.

that just cow to suite the courses in case europe confused course on software main to a suite

maintainability every much i'm to say very much british subject air eye briefly the syllabus
is add falls eye may or may not stick exactly it this

this lecture is cow go arm boy be an introductory scenario

The correct transeription is ax follows

that just to say what the course is in case you’'re confused course on software maintenance
we've got nine lectures it’s not very much time to say very much about this subject very
briefly the syllabus is as follovs i may or may not stick exactly to this

257

this lecture is going Lo be au introduc tory scenario

As was said in the introduction, many speech recoguition systemns restrict what inay be spoken by use
of a grammar. We have taken the opposite approach by developing a set of rules that can be used to
check the syntactic incorrectness of sequences of words, We eall these syntactic rules an “anti-grammar”
as the rules are used to penalise certain syntactic constructs rather than identify syntactically correct
sequences. Currently, the anti-granunar is made up of four parts.

e simple rules concerning sequences of particular syntactic categories, for example:

ADJECTIVE ARTICLE ADJECTIVE

more complicated rules coneerning sequences of syntactic categories in addition to particular forms
of words, for example: ARTICLE VERB(not ‘ing' form)

o

rules concerning words that heliave in o strange manner, for example, not and very

common constructs of spoken 17

slish. Tor exmnple. to VERB or very ADJ and common words
are given an advantage

If a particular chunk of words from the word Iattice is of fess than ten phonemes in length, parsing is
delayed until the next chunk of words is received . The two chunks are then concatenated before parsing.
A chunk of less than ten phoneies is only likely 1o contain one, two or maybe three words and is too
short for the anti-granmnar to have an effect. The parsing takes place in reverse, that is, from the end of
a chunk of words in the word lattice, to the heginning. "This is for specd and simplicity. As the dynamic
programming stage determines which words are likely to end at particular phonemes, a data structure
is constructed that contains a list of phonemes, each phoneme having associated with it a list of words
that are thought to end at that point in the input. "Fhis means that it is easier to work from the end of
a chunk of words.

The search algorithm used to parse a sentence is a mixture of breadth first and best first methods.
Initially a breadth first scarch is used, this is 1o avoid carly conunitment along an incorrect parse path.
Then a best first search takes over. ‘Fhis part of the search involves evaluating an underestimate of the
penalty likely to be incurred between the eurrent point of cach path and the goal. This step is one of
the two improvements that distinguish a normal best first scarch from an A® search. The other step
involves removing all but the best scoring path that reach the same point in a parse. lowever, an A®
search would not be appropriate during our trace back because the anti-grammar may reduce as well as
increase the scores of alternative paths through the word lattice chunk, a path cannot be removed as the
next word to be parsed may reduce that path’s score, making it the current best path. If the last word
(or words) of a chunk of words is not very recognisable the parser may spend unnecessary time looking
for the correct words at the end of the chunk bhefore proceeding to find the words at the beginning of the
chunk. If this occurs, the parse algorithim switches to a forward combination of breadth first and best
first searches. The time involved in constructing a new data structure, that associates a list of phonemes
with the list of words that starf at that point. is less than the time spent unsuccessfully searching for
words at the end of the chink . 10 is also worth using the technique for the greater accuracy of recognition
that is produced.

The parsing algorithm also handles phonemes that have heen inserted into and deleted from the input
by allowing a particular path to ignore (skip) a phoneme. or allowing a phoneme to be “shared” by
two different words (co-articulation). This would incur a sinall penalty. In the first example below, a
phoneme has been incorrectly inserted between the two words, and in the second example a phoneme
has been incorrectly deleted between the two words.

just to just to
dZ Vs t k t @ dZ Vs ta@

258

In the first example, the word lattice would contain the word Jjust spanning the first set of phonemes,
and the word to spanning the fast set of phonemes, and probably a word like stick spanning the
“s t X" phonemes. This-is handled in AuraiD by allowing the parsing algorithm to skip over the
inserted phoneme. In the second example, the word lattice would contain the word just spanning the
“dZ V s t” phonemes, and the word to spanning the “t @” phonemies. This is handled in AURAID by
allowing the parsing algorithm to parse the “¢” phoneme twice, enabling both words to span it.

The output produced by the current version of the trace back mechanism of AURAID is reproduced below.
This gives a word recognition rate of approximately 85%. Incorrect words and deletions are marked with
an asterisk.

that just to say what the course is in case you are confused course on software maintenance
vhy* got in* by* no* lectures it’s not very much I’m* to say very much buts iss subject very
briefly the syllabus is as flows+ i may or me#¥ not stick exactly = this

this lecture is going to be an introductory scenario

CONCLUSIONS

This research has produced an efficient, one-pass dynamic programming algorithm for use in recoghising
words from a continuous stream of corrupted phonemes. ‘This algorithm produces several word lattices
that span the spoken input. The trace bhack (parsing) stage makes use of a set of anti-grammar rules
to effectively parse these word lattices of naturally spoken English. This anti-grammar does not define
the form of legal sentences in the usual sense of grammar but penalises grammatically incorrect or
grammatically bad sequences of words.

The next stage of research is to analyse a large corpus of annotated (i.e. words are tagged with their
syntactic categories) speech and try to determine empirically a set of reliable anti-grammar rules. We
will then incorporate a semantic stage during the trace back, which would use knowledge about the topic
of the lecture to distinguish between certain paths in the word lattice. This semantic stage would also
make use of cliches specific to the topic of the lecture. The system will soon move on from being a
simulation to being a prototype system when we use a real continuous phoneme recognition system.

ACKNOWLEDGEMENTS

This research was funded for two years by a Science and Fngineering Research Council (UK) studentship.
The Royal National Enstitute for the Deal also supported this researeh with a grant. A Special Equipment
Grant was provided by the University of Durhamn and financial assistance with the purchase of the
transputers used in this researeh was provided by Transtech Doviees Lid, The researeh is currently
funded by a grant o the Leverholme Trs

REFERENCES

Bridle, J. S., Brown, M. D. & Chamberlain, R. M. (1983}, Continuous Connected Word Recognition
using Whole Word Templates, The Radio and Electronic Engincer, 53(4), pages 167-175.

Browning, S. R., Moore, R. K., Ponting, K. M. & Russell, M. J. (1990), A Phonetically Motivated
Analysis of the Performance of the ARM Coniinuous Speech Recognition System, Proceedings of the
Institute of Acoustics Autumn Conference, Windermere.

Ney, 1. (1984), The Use of a One-Stage Dynamic Programming Algorithm for Connected Word Recog-
nition, IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2), pages 336-340.

Sitverman, L. F. & Morgan, D. P (1990}, The Application of Dynawic Programming to Connected Speech
Recognition, IEEE ASSP Magazine. pages 6 25, July

259

