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ABSTRACT - Several different techniques have been used to process speech signals in
preparation for classification. The most commonly used ones rely on assumptions of signal
stationarity that are not true for many important speech signal types. Recent work in the
field of time-frequency signal analysis has produced a number of representations which do
not make these restrictive assumptions. This paper reports on work being done to quantify
the differences between these representations, as relates fo the classification of speech
signals using the neural network architecture popularized by Teuvo Kohonen in 1984.

INTRODUCTION
A typical speech recognition system has three distinct sections (see figure 1, below): a data
acquisition section which translates sound waves into a form suitable for processing, a filtering, or

spectrum extracting section, which makes repetitive, frequency-domain features of the signal
apparent, and a classification section, which labels the speech signals in some meaningful way.
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Figure 1. Block representation of mechanical speech recognition system

In mammals, the acquisition task is performed by the outer and middle ears, which convert air
pressure variations into small mechanical vibrations. The spectrum estimation task is performed by
the cochlea, which produces nerve impulses relating to the frequency content of the sound. The
classification process is performed by the relevant sections of the brain.

In digital systems the data acquisition system usually involves a microphone, an amplifier, an anti-
aliasing filter, and an analog-to-digital converter/sampler. The last two sections are usually performed
by digital computers, using a number of different techniques. Commonly the spectrum estimation task
is performed using some form of Fourier transform, linear predictive coding, or cepstrum estimation,
while the classification task has been performed variously by matched-filter templates, dynamic time
warping, expert systems, hidden Markov models, and neurai neiwork models.

The speech signal is characterized by periods of fairly stationary frequency spectra, with multiple
energy peaks corresponding to the ‘formants’ or resonances of the voiced sounds. These are
punctuated by regions of ramping frequency (the liquids and semi-vowels), periods of coloured noise
(the fricatives), periods of silence {the giottal stops), and very short bursts of noise energy (the plosive
releases). One of the main failings of automatic speech recognition systems to date has been in the
area of recognizing the iess stable speech sounds. That is, everything other than the vowels. This is
a significant shortcoming, because it is believed that a lot of the speech information is carried in these
transient signals.

It seems pointless to embark on a project to produce a speech recognition system based on an input
representation known to be unable to represent some speech signals. As has been mentioned, this is
the case with most of the techniques popular today. It is necessary, therefore, to investigate other
speech representation options, which might be capable of more complete information transfer.
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In the following section a review of the relevant characteristics of some of the standard speech
representation techniques will be presented, along with the characteristics of some of the newer
techniques.

TIME-FREQUENCY REPRESENTATIONS REVIEW

This review will look at those aspects of the selected representations that intuitively bear on their
usefulness as a speech signal coding.

° A successful speech representation should not miss the rapid frequency changes found around
plosives and in some liquids.

° The representation should be stable when frequency components merge, cross, start and stop.
This is largely so that ‘continuing’ components are recognized as such. Parametric
representations tend to jumble the order of features at discontinuities, making this difficult.

° Fine time resolution is probably important for classifying some of the plosive release sounds.

° it would be nice to be able to avoid the artifacts produced by most bilinear time-frequency
representations, such as the Wigner-Ville distribution, when used to analyze muiti-component
signals. This may not be a real constraint, but the presence of time-frequency signals that do
not correspond to time signals seems intuitively unacceptable.

¢ Although it should not be necessary to replicate the performance of the humian ear to perform
speech recognition, this is an example of a working speech recognition system, and it would
perhaps be a good idea to approximate its characteristics.

Short Time Fourier Transform:

The short-time Fourier transform (STFT) is the periodogram spectrum estimate of the product of the
time signal with a window centred at a number of (usually eveniy spaced) instants in time (see
Rabiner and Gold, 1975). It is very widely used, and forms the basis for the familiar ‘sonogram’
representation of speech.

In practice, it is calculated at a fixed number of evenly spaced frequencies, using one of the fast
implementations of the discrete Fourier transform (a Fast Fourier Transform or FFT), with a window
whose fengih is on the same order as the principle pilch period, in order to achieve sufficient
frequenicy resolution to locate the voiced formants. An unfortunate side-effect of this restriction on
analysis window length is that it also limits the time resolution to the same order of size. This means
that transient signals, such as plosive releases may be missed or misinterpreted as a result of being
smeared into the other signals occurring during the window period.

Auto-Regressive Model Spectrum Estimate:

The Auto-Regressive (AR) Model spectrum estimate (see e.g., Marple, 1987), is one of the class of
“modern” spectrum analysis techniques whereby assumptions about the structure of the signal are
used to aliow sharper resoiution of the peaks of the spectrum. iIn this case the assumption is that the
signal can be modelled accurately by an auto-regressive modet with a finite number of parameters.
That is, a model whose output is a linear combination of the input signal and previous values of the
output signal. Another way of describing it is as an all-pole filter. This is actually a surprisingly good
approximation for most of the vowels. its failings are that the nasal sounds are best modelied by a
filter containing zeros (which an AR model can only approximate), and that most of the parameter
estimation techniques assume signal stationarity over some moderately long analysis window, just
like the short-time Fourier transform.

Reflection Coefficients:

An efficient way to calculate the Auto-Regression (AR) coefficients used for the previous method is
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the Durbin-Levinson Recursion algorithm, (Marple, 1975) which fits successively larger models to
each block of speech data, up to some pre-determined maximum model order. The last model
coefficient calculated for each order is referred 1o as a ‘reflection coefficient’, and has some physical
significance. They can be related to the sizes of resonant cavities, and are sometimes used in
remedial speech programs to provide some indication of the positions of various parts of the vocal
tract.

These parameters should vary continuously for continuously varying speech sounds (aithough the
actual AR coefficients do not), and they convey the same information as the AR model power
spectrum, more compactly. They might therefore be at least as useful a speech representation as the
AR model spectrum, and possibly more efficient.

Wavelet Transform:

The wavelet transform is a time-scale rather than a time-frequency transform, but its output can
usually be given a time-frequency interpretation (see Daubechies, 1990). Where each of the discrete
Fourier transform coefficients can be thought of -as the projection of the signal onto one of a set of
frequency-shifted sinusoids, the wavelet transform is the projection of the signal onto a set of time-
scaled versions of an analysing function called a wavelet. if the wavelet has some oscillatory nature,
then the longer wavelets will ‘select’ the lower frequencies, and the shorter ones the higher
frequencies. A typical wavelet might look like the one shown in figure 2:
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Figure 2: The shape of a typical ‘bandpass’ wavelet.

This should have good focalization in both time and frequency, and may be complex. In the interests
of convenient inversion, certain constraints are placed on the functions that can be used but a
commonly used one is based on a Gaussian-weighted complex sinusoid.

Another way to think about the difference between the short-time Fourier transform and the wavelet
transform is in terms of filter banks. The short-time Fourier transform can be considered to be the
output of a bank of band-pass filters centred on evenly spaced frequencies, each with the same
impulse response length, and the wavelet fransform can behave like a bank of filters with constant Q,
centered on a geometric progression of frequencies. This means that time resolution is traded
against frequency resolution: high frequencies can be resolved with high time resoiution, but low
frequency resolution, while the opposite is true of low frequencies. This is conceptually nice, and
actually quite similar to the response of the cochlea.

The wavelet transform is not limited to behaving in this way, as the ‘analyzing wavelet' might be
chosen to-exhibit other properties, but wavelets can be designed to exhibit the nice properties
mentioned. Longer wavelets can give better frequency resolution at the expense of time resolution.

For analyzing wavelets meeting the restrictions which classify them as ‘orthonormal bases’ (see
Daubechies 1990,) the wavelet transform can be implemented very efficiently, based on trellis filters,
similar to those used for subband coding of speech and video images. This gives the implementation
a performance on the same order as that of the discrete Fourier transform.

The Bilinear Time-Frequency Distributions:
A relatively new type of signal analysis technique is based on the members of Cohen's class of

bilinear distributions (Cohen, 1889). It turns out that the spectrogram can be described as a member
of this class, but for this discussion it is probably best left where it is. The members of this class are
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truly time-frequency representations, with no restrictions on the stationarity of the signal. It is possible
to construct members of the class with the following desirable properties:

° The integral over frequency at any time produces the instantaneous energy of the signal.
° The integral over time at any frequency produces the stationary power spectrum.

Another characieristic of these representations is that they will resoive the frequency of signal
components whose frequencies are rapidly changing.

A disadvantage of them, and a direct consequence of their product-kernel formulation, is that spurious
peaks can appear between the different components of a signal. This has largely been solved now.
(Zhao, et. al., 1990, and Choi & Williams, 1989). Three members of this class will now be described.

Windowed Wigner-Ville Distribution:

The Wigner-Ville Distribution (WVD) (see Boashash, 1990) is the simplest of the distributions in
Cohen's class, as it is the ‘default’ case. All of the other distributions are filtered versions of the WVD,
This gives it some advantages over the others and some disadvantages.

The WVD has a number of nice properties for signals which are essentially linear-FM chirp signals,
relating to resolution and instantaneous frequency determination. Unfortunately, for signals (such as
speech) where multiple frequency components are present at once, the WVD produces a ‘cross term’
at the mean frequency of each pair of components. This can make the representation difficult to
interpret, but it is not certain that they would hinder a mechanical pattern recognition system.

Choi-Williams Distribution:

The Choi-Williams Distribution (see Choi & Williams, 1988,) is one case of Cohen’s class of time-
frequency distributions. 1t has a parameter, usually referred to as ‘sigma’, which affects the amount of
filtering performed. The filtering suppresses the cross-terms, while reducing the resolution of the self-
terms. In one limit, the distribution reduces to the Wigner-Ville distribution. In the other limit the
frequency resolution is the same as that of the STFT, but the time-marginal condition (see above) is
still maintained, so transients can be accurately positioned in time.

Zhao-Atlas-Marks, or Cone-Kernel Distribution:

This distribution {see Zhao et. al., 1990) is another member of Cohen's class of distributions. As well
as suppressing the cross-terms caused by the bilinear nature of the kernel, it positions them on top of
the self-terms. This means that there aren't any spurious peaks between components of the
distribution. Instead, the peaks representing the actual signal components oscillate in amplitude. It is
mooted by Zhao et. al., that this is not important for most useful cases.

Notes on Representations

In considering the approximation of the characteristics of the human ear one needs mainly to address
the question of frequency scaling and time resolution. Human hearing operates with roughly a
logarithmic frequency scale, and most of the speech information is located in the lower part of the
range. When speech is analyzed with linear frequency scale techniques, a large fraction of the data
points carry very little information, while there may be insufficient resolution around the low
frequencies that do contain the information. This appears to be one of the advantages of the wavelet
transform, which inherently has a log-frequency scale. An AR-model based spectrum estimate using
a log-frequency scale could also meet this requirement.

While the criteria listed above relate to understanding speech representations, they do not form a
rigorous framework for comparison. For this reason, a test consisting has been devised which uses
each of the representations as the input to a classification system, which is then ‘trained’ on some real
speech data. The resulting classifications are then compared for completeness of coverage of the
phonetic classes. Of particular interest here is possible distinctions between the plosive sounds,
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which have proven to be much more difficult to classify than the more stable vowel sounds.
THE CLASSIFICATION SYSTEM

The Kohonen Network (Kohonen 1984) is a self-organizing classification system, which performs
unsupervized classification of the input patterns into a fixed number of classifications. It is the basis
for the experiments performed.

The Kohonen network is based on a two dimensional layer of classic neuron structures, each with
complete connection to a single input vector, and with a saturating linear output. The nodes are also
connected laterally to all of the other nodes in the network with inhibitory connections, to perform a
variation on a winner-takes all function. That is, the node which is most activated by a particular input
pattern ends up as the centre of an island of active nodes in the network. The network learns using a
simple Hebb style learning rule, with the simplification that the node outputs will be sither 1 or 0, and
so the active nodes are adjusted in the direction of the input pattern, while those not active are left
alone. The system can be efficiently simulated on conventional digital computers or DSP chips.

There are a number of problems with the learning algorithm, which involve the pre-determined rate of
learning. This is controlied by a number of parameters which will affect the final convergence of the
classifications. This problem has not been solved yet, and for these experiments the learning rate
parameters were hand-adjusted until the program worked.

The Kohonen network described only performs a vector quantization operation on the input speech
sounds, classifying each time interval into one of a number of categories, so the results presented
relate only to instantaneous analysis of the data. Since this is obviously not capable of making
classifications on the basis of time sequence information it is not expected to periorm particularly weli.

A number of researchers have proposed methods of incorporating time information into a recognition
process, but time has not allowed any of these more complicated approaches to be tried yet.

EXPERIMENTAL RESULTS

The speech data consisted of two data sets of ten seconds of speech for each of two speakers. The
speech was sampled at 10kHz, using the 14bit resclution available on a DASH-16 analog fo digital
converter card in an IBM-PC clone. This produced four sets of 100,000 samples each. The two
speakers were both radio presenters, a female speaker on 4Z2Z-FM, and a male speaker on the
ABC. The speech was thus quite fluent and unaffected.

In each speech representation case a window of 64 samples was used (except for the wavelet
transform case, where the window varied between 511 samples and 35 sampies), with a time
resolution of 32 samples. The two AR model based techniques used model orders of 14.

The Kohonen networks were all 18 by 14 rectangular arrays of nodes (not the hexagonal arrangement
used by Kohonen), with number of weights per node determined by the input vector length. This was
32 in all cases except the reflection coefficient case, which had only 14 parameters. As per
Kohonen's algorithm, the input vectors are length normalized, and the maximally active neuron is
determined by minimum Euclidean distance. This proved to be quite effective, although there is some
doubt as to whether the information lost in the normalization process is significant, and how this
affects periods of silence (which are actually low-level noise).

Unfortunately, it has proved harder to determine ‘rate of convergence’ and ‘completeness of
coverage' than anticipated. The experiments performed seem to indicate that all of the test networks
did converge after ihe 3000 sample vectors (0.3 seconds), but just where they could be said to have
‘converged' is debatable. From the plots generated during training, it seems that the network was
largely stable after 1500 sample vectors for the female speaker data set, and after 1000 vectors for
the male speaker data set, for all representation techniques. This was not expected, s0 work is
continuing with modifications to Kohonen's learning algorithm. Different and more rigorous measure-
ment techniques are also planned.
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CONCLUSIONS

We have examined a number of candidate representations of speech, from a loosely theoreticai
standpoint, with a view to selecting one to form the basis for a speech recognition system using a
Kohonen-style neurat network classifier. From this discussion of features, the wavelet transform,
Zhao-Atlas-Marks (Cone Kernel) or Choi-Wiliiams distributions seem 1o be the best suited fo the
speech problem, although this has yet to be shown conclusively in practice.

We have also used four of these techniques (the short-time Fourier transform (STFT ), the wavelet
transform, auto-regressive (AR) model based spectrum estimation and AR mode! reflection
coefficients), the Wigner-Ville, Choi-Williams and Zhao-Atlas-Marks distributions as inputs to
simulations of Kohonen-style networks, and seen that they alf converge, for the 10 second dataset
used. The rate of convergence seems at this stage to be more dependent on the training data set
than on the representation technique used.

Insufficient experimental evidence has accumulated to prefer any particular representation. More
work is in progress in this direction.
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