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ABSTRACT - A Code Excited Linear Predictive (CELP) coder with a stochastic-multipulse
(STMP) codebook is presented. The LPC residual exhibits a certain structure due to
non-linearities in the glottal excitation. This structure can be exploited by a refinement of the
STMP excitation signal, as a training procedure for the codebook. The algorithms are
described and results are reported, both in terms of segmental SNR and subjective
preference.

INTRODUCTION

Code Excited Linear Predictive {(CELP) coders have shown considerable promise for speech coding
at bit rates as low as 4.8 kbps. A CELP coder (Schroeder & Atal, 1985) comprises the Linear
Predictive (LP) fitter for pitch analysis P(z), and the short-term filter A(z) to account for the formants. A
weighting filter A(z/y) is important for utilizing the human ear auditory masking properties, by moving
quantization noise into frequency regions with a high signal level. The appropriate LP excitation signal
is found using an analysis-by-synthesis algorithm performing a search through the codevectors ¢ (k).

Qur basic structure is shown in figure 1, where the weighting filter has been moved out of the main
loop to reduce the synthesis complexity. Also, the effect of the short term filter memory is subtracted
from the incoming speech signal, to allow the synthesis filters to be zeroed for each block.
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FIGURE 1 - Basic CELP coder

Restricting the pitch lag downwards to 40 samples will have the same effect on the pitch filter, which
can also be removed from the synthesis loop. The coder used in our simulations uses a "recursive
codebook® or self excitation codebook to take care of the signal pitch, and keeping the lag 240 makes
this codebook search an independent task (Paliwal, 1987).

Despite those complexity reduction methods the main problem in realising a CELP coder is the

computational load involved at the coder side, and different methods for further reducing the
complexity have recently been proposed.
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By moving the search for the best codevector from time domain to frequency domain the convolution
operations may be replaced by (complex) multiplications, as the error signal is invariant under
orthonormat transformations (Trancoso & Atal, 1986). The cost of computing the error signal can
therefore be reduced by a factor 10 at the expense of performing DFT's and increasing the need for
stored information (i.e. storing frequency representations of the codevectors). Another, non-ideal,
method for reducing the computational load is to perform some pre-selection of the codevectors prior
to creating the synthesized speech, as is covered in (Paliwal, 1988).

The cost involved in synthesizing the speech may also be reduced by restricting the codebook to
contain overlapping data. Filtering of any codevecior except the very first will then be reduced to
filtering only one or two new samples and subtracting the contribution from the oldest one or two. This
will as well reduce the need for storage. It is shown that stochastic codevectors sharing all samples
but one or two will perform as well as a standard codebook of non-overlapping vectors (Kieijn,
Krasinski & Keichum, 1988).

A final method used for complexity reduction is to restrict the codevectors to containing only a few
non-zero entries. The sparse vector or stochastic-multipulse approach will reduce the number of
muitiplications needed to filter the excitation signal by a factor of approx. 10, when a 40-sample
codevector contains 4 pulses only.

This paper describes our simulations run with the stochastic-multipulse self excited linear predictive
speech coder and the experiments performed to enhance the quality of the codebook.

In the next chapter the stochastic-muitipulse codebook will be described with implications to
enhancements. The following chapter will describe our methods chosen for codebook training, and
the results are reported in the last chapter.

STOCHASTIC-MULTIPULSE CODEBOOK

The generation of stochastic-multipulse (STMP) codehbooks is motivated by the success of
multipuise-excited (MP) LPC-based coders. For the MP coder to periorm well at least 1 pulse per ms
is required, and the bit rate will be in excess of 10 kbit/s. The pulse positions and amplitudes will also
be successively optimized, with a possible non-global optimum as the result. When the LP filters are
excited from codevectors, the pulses will be optimized simultaneously, and the bit rate will be
reduced. A saturation in quality is shown to occur (Paliwal, 1987) when a 40-sample codevector
contains 4 stochastically generated pulses, or one pulse per 1.25 ms. We will in this paper
concentrate on codevectors with this property. The pulse amplitudes are Gaussian zero-mean,
unit-variance, and the positions uniformly distributed within the codevector.

Upon examining the residual signal after removing the pitch and inverse-filtering with the LPC-filter
A(z) we are faced with the fact that a certain structure is still present in the signal. This structure has
been described {Sreenivas, 1987) as a result from the vocal-tract excitation, the glottis. Apart from the
large pitch pulses we will have a slowly varying smooth component in the speech signal that is due to
the non-linear glottal wave shape. When the speech is inverse-filtered the 2nd derivative of this glotial
wave will be present, in form of large pulses followed shortly after by a second pulse of (possibly)
opposite sign.

The doubie-pulse nature found in the LPC residual is worlh exploiting. The pulses may be
parameterised, but the result would be expensive in terms of bitrate. Our approach is 1o try to collect
multipulse codevectors that will reflect this nature as a means of generating more accurate synthetic
speech at no extra computational cost.

Using a stochastically populated multipulse 1024-codebook the plots in figure 2 show the most-used
codevectors in coding approximately 26 seconds of Norwegian, male/female speech.
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Figure 2 - Codevector plots

This clearly shows that most of the chosen codevectors exhibit the double-pulse nature. It is also
worth noticing that the larger pulses are as a rule located in the beginning of the codevectors; this
being a result of a single-frame-only error signal generation, and worth exploiting.

We are therefore faced with a situation where a trained codebook reflecting some of the signal
properties most likely will give a speech coder with increased quality. At the same time it is favourable
not to give up the interesting features of a non-trained, stochastic codebook in terms of the
signal-independent performance.

Training a codebook is normally done by using the K-means algorithm (Linde, Buzo & Gray, 1980),
which will produce codevectors as the centroids of accumulated training data. This in our case has
two major drawbacks: the algorithm would not be able to generate the desired multipulse codebook,
and the enormous amount of training data required makes the procedure non-feasible in ierms of
computer cost.

A different, non-ideal, training algorithm may however be used, which will result in a codebook
combining both the trained-codebook properties and also stochastic-codebook features.

TRAINING PROCEDURES

We have considered two basic methods for training a STMP codebook, both based on a selection
from existing codebooks as a result of running training data through the coder. For each vector in the
codebook a log is updated when the vector gives the minimum weighted error for a speech segment.
The statistics we collect from our simulations are:

- number of times each codevector is selected
- accumulated weighted MSE for the vectors chosen
- min/max MSE

The data obtained gives the possibility for generating a large variety of codebooks based on the
different logged measures.

By selecting a specified number of vectors to retain, a new codebook is generated by substituting the
remaining vectors by new, purely random entries. The algorithm is then repeated with the new
codebook as input, and an increased number of vectors are kept for the next generation. Two basic
methods may be used when selecting the vectors for further use, as shown in figure 3.
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METHOD - 1 METHOD - 2
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Figure 3 - Selecting vectors

The two methods may perform differently, but will probably give approximately equal results. We have
therefore decided to concentrate upon method-1, in which all codevectors compete on an equal basis
to be chosen for the next codebook.

By iterating the training sequence as described the codevectors chosen should grow into a codebook
of equally “"good" vectors expressing the inherent structure of the LPC residual. But as described
earlier we will keep part of the codebook untrained to serve as a purely stochastic database.

RESULTS

The training data used in our simulations was made up of approx. 5 minutes of Norwegian speech,
equally divided between male and female speakers (generated with normatl background noise). Even
when we use the STMP codebook, running the training procedure is costly in terms of compiiter time.
The codebook size has therefore been reduced to 512 vectors for our simulation purposes. QOur
primary aim was to generate a codebook consisting of 256 trained and 256 random vectors. Following
method-1 described above we successively selected 32, 64, 96, -- up to 256 vectors from the most
popular (i.e. most frequently chosen) using the training data. By using the number of times each
vector was selected only, the following plots show the distribution among the vectors in the initial and
final codebooks.

CDBKi CDBK8

Figure 4 - Vector selection distribution
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We can observe a certain flatness of the distribution as we move on to later generation of codebooks;
no astonishing change can be spotied, however. By coding two sentences not part of the training
data, we find the segmanted SNR'’s given in Table ta, (CDBK denotes the original STMP codebook;

CDBKX is the enhanced codebook). From a paired- comparison test (Sreenivas, 1987) we find the

CUBSKA IS 18 ennanced Cotenlox a e0-co tesl (oree

subjective preference scale given in Table 1b.

Original - Original 0.00
CDBK 11.50dB | CDBK -2.40
CDBKX 11.36 dB || CDBKX -2.61
Table 1a Table 1b
Segmental SNR Subjective Preference

As ean be seen from the tables, no increase in quality is observed.

The results from the training procedure can however be further exploited. By selecting the 32 best
vectors from each of the generated codebooks, based on the additional statistical information
obtained (and assuring against duplicates), new codebooks are generated:

CDBKA - Selection based on minimum MSE
CDBKB - minimum MSE + popularity (weighted)
CDBKC - absolute minimum error obtained

CDBKB is generated by assigning to each vector a "quality” factor

=0 - VMSEIMSEMAX +(1 ~ &) - NchosenMax [Nchosen )

where the best value ot « is found to be 0.5, and "good" vectors correspond to minimum £, The results
are given in table 2, where we find minimal differences. (Again, the original codebook CDBK is used
as a reference; also, CDBKC is excluded from the subjective test as a result of informal listening.)

Original - Original 0.00
CDBK 11.50dB || CDBK -2.40
CDBKX 11.36 dB || CDBKX -2.61
CDBKA 11.27dB || CDBKA -4,56
CDBKB 11.75dB || CDBKB -2.79
CDBKC 11.33dB
Table 2a Table 2b
Segmental SNR Subjective Preference

An interesting result from the codebook training is found, however, by using largely diminished
versions of the codebooks. By using the first 32 vectors from the codebooks only, we observe a
noticeable subjective improvement in both codebooks CDBKX and CDBKB:
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Qriginal - Original 0.00
CDBK 9.88 dB CDBK -2.67
CDBKA 7.53 dB CDBKA -4.94
CDBKB 9.91 dB CDBKB -2.20
CDBKX 9.48 dB CDBKX -2.54
Table 3a Table 3b
Segmental SNR Subjective Preference

CONCLUSIONS

Training procedures for the codebook excitation signal in CELP coders have been presented. By
running simulations and performing listening tests it may seem as if no increase in quality is found.

By using simulation data it is found, however, that codevectors can be chosen to compose a
codebook of minimal size. These codebooks are suitable for low complexity coders at the cost of
some subjective degradation.

Design of small codebooks also raise a number of interesting questions for further work.
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