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ABSTRACT: A novel method of adaptive Kalman filtering (KF) of noisy speech is proposed. The
method is based on block model of autoregressive (AR) signal in the state space (S9). ltis
shown that such representation allows to reduce computational expenses and to decrease
filtering error as compared with known methods. Also the essentially new method of estimation
of AR parameters in the presence of noise is developed. This method is based on the usage of
optimal Bayesian estimation and vector quantization.

INTRODUCTION

The problem of speech enhancement now has great importance due to the development of automatic
speech recognition systems, intended for usage in adverse noisy conditions. This problem is also
urgent for systems of digital telephony, because their efficiency degrades quickly in the presence of
background noise.

Earlier this problem was typically solved with the help of filtering methods, which did not use specific
features of speech (Boll (1979), reviews of-Lim & Oppenheim (1979), Kybic (1 998)). At the present
time a majority of speech enhancement methods are based on the AR model of speech generation:
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S(n)=—k2 as(n—k)+gw(n), ' "
=]

where s(7) and w(n) are the discrete values of speech and excitation (non-correlated noise in the
case of unvoiced speech or pulse train in the case of voiced speech) respectively; D is an order of AR

filter; g and a, (k =1,..., p) are the model gain and filter coefficients respectively.

We assume that only observations z(#), which are formed by the sum of pure speech s(n) and white
noise V(7)) with zero mean and known variance o‘f , are available:

z(n) = s(n) +v(n) @

Thus, speech enhancement procedure includes 2 stages: estimation of AR parameters of noisy
speech, and filtering with the help of measured parameters.

Along with the Wiener filtering methods, w="-h use the AR mode! of speech (Lim & Oppenheim
(1979), review of Kybic (1998)), increasing interest is attracted to the usage of Kalman filter. The
results of Gannot (1998), Goh (1999), and Kybic (1998) show the increasing of enhancement
efficiency due to the adaptation by AR parameters as compared with the filtering approaches, which
do not use specific features of speech.

However, there are several difficuliies with the application of this methodology. The first is connected
with the absence of convenient and at the same time effective methods of AR parameters estimation
in the presence of noise. Whereas the methods of optimal filtering are reiatively well studied, this part
of the problem still remains open. The standard methods of AR parameters calculation, which are
widely used in speech coding (for instance, autocorrelgtion method (ACM) in Markel & Gray (1976),
Rabiner & Schafer (1978)), lose their efficiency in the presence of background noise. So, there is a
need for noiseproof methods of estimation.

Among such methods we must emphasize those based on the principle of maximum likelihood. One of
the first papers in this direction belongs to Lim & Oppenheim (1978). They proposed an iterative
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method (a kind of EM algorithm), every iteration of which consisted of the application of ACM with
consequent Wiener filtering based on the obtained parameters. This method, however, does not lead
even to the locally optimal estimate, and this influences the quality of enhanced speech. Several
similar estimation methods, based on the EM algorithm, were mentioned by Gannot (1998). All of
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them give, in the best case, convergence to the iocal maximum of likelihood funci
of global maximization still remains open.

s Doy o meabla
tion. But the problem

Another problem under discussion is connected with thre high computational expenses of modern
speech enhancement procedures. Even without adaptation, Kalman filtering needs essentially higher
computational efforts as compared with Wiener filtering (see, for example, Goh (1999)).

Taking these difficulties into account, our goal is the development of: 1) more convenient and effective
noiseproof methods of AR mode estimation; 2) more efficient methods of Kalman filtering.

KALMAN FILTERING BASED ON THE BLOCK MODEL IN THE STATE SPACE

Kaiman filter, as opposed to Wiener filter, is better accommodated to the processing of nonstationary
signals and data of finite length. Its usage implies representation of AR model (1) in the SS. in papers
by Gannot (1998), Goh (1999), Kybic (1 998) the iterative kind of representation was used:

x(n) = F(n)x(n—-1)+ G(m)w(n) s

z(n) = Cx(n) +v(n) @
where x(n) = (s(n—p+1) s(n-p+2) ... s(n-1) s(n))" is the state vector, matrices F(n) and
G (n) are defined by AR parameters.

KF based on (3) needs computation of all necessary mattices after every shift on discretization interval
T, and thus leads to significant computational expenses. Also, such filtering has some contradiction
with the estimation of parameters, performed on the biocks of data. That’s why we propose a new
block model of AR signal in the SS, which allows us to reduce computational expenses.

Let's introduce a new state vector:

§O = (s(G-DI+D) s((G -1 +2)... s(jl))T (C)]

As opposed to the previous case, vector (4) includes the array of / samples (/ 2 p) and, also,

adjacent vectors do not intersect and are separated by the time interval [T . Then, using AR model (1)
and measurement equation (2), we obtain the following representation in the SS (it is assumed that
AR parameters do not change in the limits of one time block):

®)

s(1') - F(})s(j—l) +G(J')W(J')
)

2D =5 4y
Here w', v, 2 are respectively excitation, noise and measurement vectors, which are formed
similarly to (4).

We obtained a relationship between F and G matrices and the parameters of AR model (1) (we drop
time superscripts for the simplicity). The elements of matrix F can be calculated in the recursive way:

F, =0, 1<i<lj<l-p

min(i-1,p) (6)
F,=- YaF ,  +u, 1<i<ll-pri<j<i

ik, j i
k=1

where
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u =0, i<i<l js<li-
{” J=mp @

u,=a, ., 1si<pl-p+igj<i

So, the first / — p columns of matrix F are equal to zero. The remaining columns are formed
by applying filter (1) to the sequence u, ={a, , @, ,,... @, 0 0.0} of length / (where j is a
number of column).

Further, G is a lower triangular matrix, the elements of which can be obtained in a similar
recursive way:

G,=g 1<i<!
mini-17) ' o ®
G,=- >aG,_ , 2<isli<j<i

k=1

We have to notice that F and G are sparse matrices and their structures are essential for the
reduction of computational expenses of KF.

After the calculation of F and G matrices, we can apply KF to obtain an optimal linear mean-square
estimate (see, for example, Sage & Melse (1972)):

V(k/k-1)=FOV(E-1/k-DFD + OGO
V(k/k)=V(k/k-1)~
V(R IE-D)(V(E/ k-1 +02E,) V{E/ k1) ©

56 = g | —lz—V(k 11)E® — FO3ED)
<3

v

Here §®is the estimate of k-th block values based on observations 20, ., 2®; V(k/k) and
V(k/k —1) are covariance matrices of filtering and prediction errors respectively.

The number of calculations of KF internal matrices is now reduced in / times (as compared with KF
based on (3)). On the other hand, one can notice that the sizes of these matrices increase in I/ y/
times. As the number of operations, necessary for inversion of a matrix, is proportional to the third
degree of its size, direct realization of algorithin (9) would increase the total number of operations in
O(I*) times as compared with the standard KF based on (3). That is why we developed economical
equivalent of algorithm (9) based on the properties of matrices in representation (5). It will be shown
(see “Experiments” section) that this method not only allows to reduce computational expenses in
comparison with the standard KF, but also provides their decreasing when the block length is
increased (the increasing of a block length also diminishes filtering error, because more future
observations are involved). KF taking into account future observations is already discussed in the
literature (two-pass and three-pass smoothing — see review in Kybic (1998)), but such algorithms have
quite a difficult realization (for instance, they use iterative KF as one of the stages).

ESTIMATION OF AR PARAMETERS AT NOISE BACKGROUND

To apply proposed KF we have to know the values of matrices F and G, which, in turn, are defined
by AR parameters of (1). As was previously mentioned, standard methods of AR parameters
calculation lose their efficiency in the presence of background noise. Among noiseproof methods we
must emphasize those based on the principle of maximum likelihood. The search for local maxima of a
likelihood function leads to-a complicated set-of non-linear equations, which cannot be immediately
solved. That is why different iterative methods are used for its solution. While these procedures are
quite awkward and laborious, they do not guarantee convergence to the optimal estimates of AR
parameters.
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That is why we propose a novel method of estimation, based on vector quantization (VQ). We refrain
from AR parameters estimation on the continuous (p + 1)-dimension space. As was shown in our

investigations, to realize adaptive KF it is enough to determine what vector from a limited set of typical
AR parameters {a,g} = {(g, - )", g} corresponds to the noisy speech frame being processed.

The number of such vectors (quantums) can be relatively low (several hundred). In this case there is
no need in the exact maximization of the likelihood function p(Z/a,g) (or a posterion probability
function in the case of Bayesian estimation), because the estimation procedure is reduced to the
verification of a limited set of hypotheses. This means a comparison  of
p(Z1a®,g“), k=1, ,N, where N isanumber of quantums; {a*’, g} is a k-th quantum of
AR parameters; Z is a vector of observations. Such a verification can be realized by direct
maximization of the likelihoed function (or a posteriori probability function) on the set of AR quantums.
The optimal estimate is represented by quantum maximizing the chosen function.

The calculation of typical quantums can be performed using well-known ideas of VQ (Buzo (1980),
Makhoul (1985)), which were introduced in connection with the problem of low-rate speech coding (in
the noise-free case). The main idea of VQ lies in the approximation of possible AR parameters of
speech {a,g} = {(q ,...,aP)T,g}T by a relatively low quantity of AR quantums. These quantums
can be determined by applying an iterative clustering K-means algorithm to the learning speech
sequence. The accuracy of representation of possible AR parameters depends on the application and
can be improved by increasing the number of quantums, extending the size of the learning sequence
and using as many speakers with different voice characteristics as possible. Especially high
effectiveness can be reached in systems intended for a limited number of speakers.

Now we will describe in more detail realization of the proposed estimation procedure. Consider frame
Z of noisy speech. We assume that its fength L is big enough (probably of several hundred
samples), so the dependence on the previous frame can be neglected and one can write (5) in the
following form (we drop superscripts for the number of frame):

Z=GW+V g (10

where W and V are the corresponding blocks of excitation and noise. For observations (10) one can
write the likefihood function:

p(2/a,8} = ——— expl-27 (GG +07E,) 2] 1)

(27)%y/det(GG” +02E,)

As the maximum likelihood estimate we choose a quantum of AR parameters maximizing (11) (for
every quantum (a®,g®) k=1 N itis necessary to calculate corresponding matrix G by
formula (8)). In the case of Bayesian estimate (maximum a posteriori probability estimate) we have to
maximize sequence {p(Z/a®, g*)* p(a® ,g%)} containing N  elements, where
P(Z/a®,g®)Y is defined by (1) and P(a®,g™ Y is the probability of &-th quantum appearance
(it is determined beforehand using the leaming sequence). We developed effective procedure of
calculation of (11), so that the described verification of hypotheses can effectively be realized even for
a high quantity of quantums. Also suboptimal approacties for reduction of calculations, as in Buzo
(1980), can be used.

Our approach can independently be applied to the important problem of noiseproof speech coding. In
previous works coding of noisy speech consisted of 2 stages ~ estimation of AR parameters was
made and only then their quantization was performed (Lim & Oppenheim (1979)). Here these two
stages are replaced by one.

EXPERIMENTS

In this section we will describe modeling of estimation and filtering methods considered in previous
sections. We have to note that all described experiments were held on the artificial AR sequences with
parameters typical for human speech. it allowed us to control the conditions of the experiments.

-
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Figure 1 shows the ltakura-Saito errors of AR parameters estimation (as functions of the signal-to-
noise ratio - SNR) resulted from the standard autocorrelation method (ACM) of linear prediction, from
widely used Wiener-EM algorithm of Lim & Oppenheim (1978) and from our maximum likelihood (ML)
method, using 32 quantums of AR parameters. The order of the AR model was equal to 10. AR
parameters of signal were changed every 160 samples.

From results presented in Figure 1 one can see that our method is advantageous as compared with
the Wiener-EM algorithm. {n particular, for SNR=0 dB, ltakura-Saito distortion is decreased on more
than 20 percent.

Now let's consider modeling of filtering methods. Special attention is paid here to investigation of KF
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Figure 1. Comparison of different estimation methods. Figure 2. Mean-square error for non-adaptive methods.

methods based on proposed block SS representation. At first we will describe results for the situation
when AR parameters are exactly known, i.e. there is no need for adaptation. Figure 2 illustrates
filtering mean-square errors (MSE) for the following methods: standard iterative KF (based on
representation (3)), block KF (/=200), block KF (/=10) and Wiener filtering (/=200). The order of AR
model was equal to 10. AR parameters of signai were changed every 200 samples.

It can be seen that all methods provide lower error valueé as compared with iterative KF. In particular,
for SNR of 0 dB, the advantage of block KF (/=200) and Wiener filter is approximately 25%.

We also studied the question of computational expenses of block KF. Ali data are presented in table 1.

Filtering method Flops |, Relative flops
iterative KF 246929 1
Block KF, /=10 111200 0.45
Block KF, /=20 103040 0.42
Block KF, /=50 88692 0.36
Block KF, /=100 83846° 0.34
Block KF, /=200 81423 0.33
Wiener filtering 70487 0.28
Optimal linear estimate 45778 0.19

Table 1. Computational expenses of filtering methods

As can be seen, all variants of block KF are advantageous as compared with iterative KF based on
(3). Besides, the number of necessary computations decreases when the block length / is increased.
Another significant result is the alignment of computational expenses of block KF (which takes into
account ail previous- history of signal) and Wiener filter (which operates only with current frame of
noisy signal). We also considered optimal iinear estimate on the blocks of /=200 samples (it
corresponds to the case F =@ in (5)). Earlier this estimate was obtained by the double usage of
standard KF based on (3) (see review in Kybic (1998)). That is why the computational savings of our
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method are more than tenfold. Also such optimal linear estimation provides essential economy (in 1.5
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