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ABSTRACT: Speech signal can be decomposed into two parts: the source part and the system
part. The system part corresponds to the smooth envelope of the power spectrum and is used in
the form of cepstral coefficients in almost all the automatic speaker recognition systems reported
in the literature. The source part contains information about voicing and pitch. Though this in-
formation is very important for human beings to identify a person from his/her voice, it is rarely
used for automatic speaker recognition. In this paper, we propose a simple and reliable method
to derive acoustic features based on voicing and pitch information and use them for automatic
speaker recognition. We evaluate these features for speaker identification using TIMIT, NTIMIT
and 1ISC databases and demonstrate their effectiveness.

INTRODUCTION

A speech signal can be decomposed into two parts: the source part and the system part. The system
part consists of the smooth envelope of the power spectrum and is represented in the form of cepstrum
coefficients, which can be computed by using either the linear prediction analysis or the mel filter-bank
analysis. Most of the automatic speaker recognition systems reported in the literature utilise the system
information in the form of cepstral coefficients. These systems perform reasonably well. The source
information has been rarely used in the past for speaker recognition systems. The source contains in-
formation about pitch and voicing. This information is very important for humans to identify a person
from his/her voice. A few studies have been reported where pitch information is used as a feature for
speaker recognition. However results are not very encouraging. The main reason for this is that pitch
estimation is always very much prone to errors. That is the pitch estimation methods are not very reli-
able, they introduce errors which affect the performance of the speaker recognition system. In this paper
we propose a simple method for extracting the voicing and pitch information from the speech signal in
a reliable manner. This is done by uniformly dividing the higher portion of the autocorrelation function
in a number of parts and computing the maximum autocorrelation value in each of these parts. These
maximum autocorrelation values (MACVs) are used as features for speaker recognition. We evaluate
these MACYV features on TIMIT, NTIMIT and 1ISC databases for speaker identification task. In order to
put these features in proper perspective, we compare their speaker identification performance with that
of pitch feature.

COMPUTATION OF PITCH FEATURE

As mentioned earlier, we compare the speaker identification performance of the MACV features with
the pitch feature. For determining the pitch value, we use two different methods: 1) the autocorrelation
method and 2) the average magnitude difference function (AMDF) method.

Consider a speech frame {s(n),n = 0,1,...,, N — 1}. In the autocorrelation method, the autocorrelation
function of the speech signal {s(n)} is computed as follows:

1 N-1—~k
R(k)= % 3 stysn+k), k=0,1,.,N-1 (1)

n=0

Since the human pitch values normally range from 2 ms to 16 ms, this autocorrelation function is
searched for a peak in this range and location of the peak defines the pitch value. The autocorrela-
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Figure 1: The autocorrelation function of 30 ms segment of vowel sound ee.

tion function of 30 ms segment of vowel /i/ sampled at 8 kHz is shown in Fig. 1. The vertical dashed line
shows the peak location.
In the AMDF method, the AMDF function is computed as follows:

N-1—k
Ak) = ziv 3 ) ~stn+K), k=0,1,.,N-1. @

n=0

The AMDF function is searched for a minimum in the range of 2 ms to 16 ms. The location of minimum
defines the pitch value.

COMPUTATION OF MACV FEATURES

Given the speech signal {s(n)}, the MACV features are computed as follows:

1. Compute the autocorrelation function {R(n) from the speech signal using Eq. (1).

2. Normalise the autocorrelation function by its value at n = 0, ie.,

r(n) = En)

= R0)" @

3. Discard the lower portion of the autocorrelation function as it contains the information about the
system component of speech and is used in the speaker recognition systems in the form of cepstral
coefficients. Using only the higher portion (from 2 ms to 16 ms) of the autocorrelation function,
compute the MACV features as follows:

i. Divide the higher portion of the autocorrelation function into N equal parts (typically N=5).
ii. Find the maximum value of the normalized autocorrelation for each of the N divisions.
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Figure 2: MACYV feature extractor.

ii. These N Maximum Autocorrelation Values (MACV) correspond to N MACV features which
are utilized for speaker recognition.

A block diagram of this process is shown in Figure 2.

Note that the MACV features sample the higher portion of the autocorrelation function at N points. In
principle, we can use the entire higher portion of the autocorrelation function for speaker identification.
But, it is not possible to do because it will make the dimensionality of the feature space too high. The
MACYV features basically model the higher portion of the autocorrelation function in terms of N parame-
ters.

SPEAKER IDENTIFICATION EXPERIMENTS

In our experiments, the MACV features are tested alone as well as in combination with the ceptral
coefficients derived through the LPC analysis. A text-independent Gaussian mixture model (GMM)
system is used as test bed for evaluating the speaker identification performance of these features.

The speaker identification experiments are carried out using the TIMIT, NTIMIT and IISC data bases.
TIMIT and NTIMIT databases are standard data bases available from the linguistic data consortium.
They are described in references (Reynolds,1993) and (Reynolds, 1995). The IISC database consists of
43 male and 37 female speakers from various regions of India. The database consists of both isolated
words and continuous speech. The original database was recorded using a high quality microphone at
16 kHz with a resolution of 16 bits. The recording environment was noise free. We refer to this data
base as [ISC-Microphone. The recorded speech from the [ISC-Microphone database was transmitted
over a mobile and cordless phone to form [ISC-Mobile and [ISC-Cordless databases, respectively. The
HSC-Mobile database was down-sampled to 8kHz due to the reduced bandwidth implied by the GSM
coder of the mobile phone.

The performance of the system is measured using identification error described as:

# incorrectly identified segments

total # of segments x 100% @

% identification error =

In order to illustrate the positive effect of the MACV features, we also show in our results the reduction
in identification error which is can be calculated with respect to LPCC features (for example) as follows:

% identi fication errorppcc — % identi fication errorjracv

% identification errorLpcc x 100% )

% reduction =

A speech segment of 24 seconds is used to train the system and utterances of 3 seconds used for
testing. Using the 1ISC databases, 3 tests are performed per speaker while 2 tests are performed for
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Figure 3: Speaker identification error as a function of number of MACV features when used alone.

Feature ISC-Microphone | IISC-Cordless | 11SC-Mobile TIMIT NTIMIT
Used id. Error (%) Id. Error (%) | id. Error (%) | Id. Error (%) | Id. Error (%)
Pitch (1)
Auto. method 91.3 90.0 91.9 86.9 92.1
AMDF method 90.0 98.3 93.1 82.9 79.0
MACV(5) 76.3 90.0 80.6 57.9 61.8

Table 1: Comparison of source based features

each TIMIT/NTIMIT speaker. For feature extraction, the speech is filtered using a pre-emphasis filter
denoted by H(z) = 1 — 0.952~1 and split into 30ms frames with a 10ms update. The segments are then
windowed using a hamming window.

For speaker identification experiments involving the MACV and LPCC features, each speaker is modeled
using a 32 mixture GMM. For the experiments with pitch, only 8 GMM mixtures per speaker are used.
For training purposes, the models are initialised using a k-means algorithm and further optimised using
the EM algorithm (Reynolds,1993). A variance floor of 0.03 is imposed on the models (Reynolds, 1 995).

For 5 MACV features, the speaker identification errors are listed in Table 1 for the TIMIT, NTIMIT and lISC
databases. For providing comparison, the speaker identification experiment is run with one pitch feature.
Two different methods (the autocorrelation and AMDF method) are investigated for pitch estimation. The
speaker identification performance with the pitch feature is also shown in Table 1. It can be seen from
this table that the use of pitch as a feature performs poorly when compared with the MACV features.
The MACYV features reduced the identification error by 30% in comparison to piich feature. In order to
see whether the MACV features contain any additional information not represented by the LPCCs, we
have conducted speaker identification experiments on all the databases using the MACV features in
combination with the LPCC features. Here, we use 12 LPCC features and 5 MACV features. The results
are listed in Table 2. It can be seen that use of the MACV features with the LPCC features improves
the speaker identification performance. It reduces the speaker identification error by 45.5% for the lISC-
Microphone database and by 39.2% for the NTIMIT database. This reduction in identification error is
quite significant.

In order to show the effect of the number of MACV features on speaker identification performance,
we carry out experiments on the HSC-Microphone database using the MACV features alone and in
combination with the LPCC features. Results are shown in Figures 3 and 4, respectively. We can
observe from this table that the speaker identification error reduces with the increase in the number of
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Figure 4: Speaker identification error as a function of number of MACV features when used with LPCC.

Database 12LPCC | 12LPCC +5 MACV | Reduction in 5 MACV
Used Id. Error (%) Id. Error (%) Id. Error (%) | !d. Error (%)
1ISC-Microphone 13.8 7.5 45,5 76.3
1ISC-Mobile 6.3 5.6 10.0 80.6
1ISC-Cordless 21.3 15.6 26.5 90.0
NTIMIT 21.6 13.2 390.2 61.8

Table 2: Performance of the MACV and LPCC features

MACYV features when used alone and in combination with the LPCC features.

CONCLUSIONS

In this paper, we have proposed a simple and reliable method of extracting voicing and pitch information
from the speech signal in the form of MACV features. We have shown that these features are more
effective than the pitch feature for speaker identification. When used in combination with the LPCC
features, these features can reduce the speaker identification errors significantly.
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