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ABSTRACT 

 

Analytical tools from Information Theory were used 

to quantify behaviour in cross-accent vowel 

perception by Australian, London, New Zealand, 

Yorkshire and Newcastle UK listeners. Results show 

that Australian listeners impose expected patterns of 

perceptual similarity from their own accent 

experience on unfamiliar accents, regardless of the 

actual phonetic distance between accents.  

 

Keywords: vowel perception; English accent 

variation; perceptual assimilation; information theory 

1. INTRODUCTION 

There is broad consensus that models of speech 

perception must capitalize on the benefits listeners 

gain from phonetically detailed exemplars, i.e., 

episodic memory for speech via encoding continuous 

phonetic dimensions, reflected in so-called “hybrid” 

models of spoken word recognition [1-3]. However, 

identifying the perceptually relevant phonetic 

dimensions within a particular speech community 

remains a challenge. Listeners may pay more 

attention to some dimensions of speech than others, 

or weight exemplars differently depending on the 

social context in which they are heard [4]. These 

factors complicate models of speech categorization 

based on acoustic/articulatory similarities, as we need 

to discover empirically the dimensions of relevance 

to listeners in different speech communities. In this 

study we present an approach to exploring 

dimensions of perceptual similarity that makes use of 

analytical tools from Information Theory [5]. 

Information Theory offers a general formal 

framework for quantifying information transfer, 

which, applied to our experiments, reveals patterns 

that may elude more traditional analyses in terms of, 

e.g., categorization accuracy.  

The empirical domain of focus is variation in the 

perceived similarity of vowels across regional accents 

of English. In a set of nine experimental conditions, 

listeners from five non-rhotic regional accents of 

English (Australia [A], New Zealand [Z], London 

[L], Yorkshire [Y], and Newcastle [N]) categorized 

19 vowels, drawing from the lexical sets of [6], in 

their own accent. Australian listeners also categorized 

the vowels from each of the other four accents.  

Recent work on cross-accent vowel perceptual has 

shown that listeners of Australian English, when 

categorizing vowels of other regional accents, show 

surprising consistency in accuracy patterns [7]. To a 

greater degree than expected based on sociophonetic 

descriptions, Australian listener accuracy in 

categorizing vowels across accents resembles the 

pattern of accuracy on their own vowels. However, 

that study provided no baseline on how vowels in 

other accents are perceived by listeners of those 

accents, e.g., how London listeners perceive London 

vowels. In addition, it focused narrowly on the 

“accuracy” of vowel categorization as opposed to the 

broader pattern of perceptual confusion represented 

in a complete confusion matrix. The focus on 

accuracy is particularly concerning because accuracy 

tended to be low (well above chance but nowhere near 

ceiling) even for Australian vowels, the listeners’ 

native accent. The explanation for this pattern in [7] 

is that the experiment restricted vowel judgments to 

bottom-up cues, via the use of nonce words.  

In this study, we took a more comprehensive 

approach, using the concept of Entropy from 

Information Theory to quantify cross-accent speech 

perception based upon complete confusion matrices. 

We also contextualised our analysis against new 

baseline conditions in which listeners of each non-

Australian accent categorized their native vowels. 

2. APPROACH 

To visualize and compare confusion matrices across 

conditions, we applied a method of hierarchical 

cluster analysis. Confusion matrices were 

progressively fused into binary clusters according to 

an objective function: minimize variance of each 

cluster, a common technique for clustering [8]. The 

result is a hierarchical structure representing a series 

of binary branches, which can be conceptualized as 

decisions and quantified in bits. The correlation 

coefficient, Baker’s Gamma as implemented in  [9], 

provides a measure of similarity between clustered 

confusion matrices—a value of 1 indicates two 
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confusion matrices are identical; a value of 0 

indicates no similarity. This analysis provides a basis 

for comparing across conditions holistically. 

Alongside our hierarchical analysis of vowel 

perception we also computed two quantities based on 

(Shannon) Entropy. Entropy is a foundational 

quantity from Information Theory. Generally, 

Entropy characterizes the amount of uncertainty/ 

information in a random variable; in our case, the 

variable is the vowel category. By giving a definite 

value to a vowel, Entropy (uncertainty) is removed 

and information is communicated.  

The first of our Entropy-based measures is 

Response Entropy, as in (1), where v is a vowel drawn 

from an inventory of I vowels. The theoretical 

maximum Entropy of a vowel system with 19 vowels 

is 4.24 bits; this is the case when all vowels occur with 

equal frequency (which is true of our experiments but 

not true of naturalistic English corpora). Response 

Entropy is the Entropy of vowel responses in the 

vowel perception task. If listeners selected all vowel 

options equally often, the response Entropy would be 

4.24, the theoretical maximum, meaning just over 4 

binary choices could distinguish all vowels. If, on the 

other hand, listeners showed some systematic bias, 

e.g., choosing one vowel category more often than 

others, response Entropy would be lower.  

 

(1) 𝐻(𝑣) = ∑ −𝑝(𝑣)I
𝑣=1 log2 𝑝(𝑣) 

 

The second Entropy-based measure is the Conditional 

Entropy of the stimulus vowel, 𝑣𝑠, given the response 

vowel, 𝑣𝑟, defined in (2), which is sometimes referred 

to as the “equivocation of the communication 

channel” or as “information loss” [10]. Within the 

context of our task, this quantity describes the 

uncertainty of the listeners about the vowels they 

hear. Higher values indicate that responses for a 

particular vowel are more dispersed across the 

response categories, i.e., listeners are uncertain about 

which vowel to choose.  

 

(2) 𝐻𝑣𝑟
(𝑣𝑠) = ∑ ∑ −𝑝(𝑣𝑟) 𝑝𝑣𝑟(𝑣𝑠)log2𝑝𝑣𝑟(𝑣𝑠)

𝐼
𝑣𝑠=1

𝐼
𝑣𝑟=1

 
 

To summarize, we quantified behaviour in our 

perception experiments with reference to Entropy-

based quantities and hierarchical cluster analysis of 

confusion matrices. The response Entropy quantifies 

the number of bits, i.e. binary choices, needed to 

encode participant responses. The hierarchical cluster 

analysis provides a representation of how binary 

branches divide the vowels according to similarity. 

Note that two confusion matrices can have the same 

response Entropy but different hierarchical clusters, 

corresponding to different patterns of perceptual 

similarity; this is something we might expect to see 

from different groups of listeners responding to the 

same vowel stimuli, if listener experience shapes 

perception. Finally, the conditional Entropy of the 

stimulus vowel given the response vowel or 

“Information Loss” provides an index of perceptual 

confusion. This is minimal when listeners reliably 

choose the same response vowel for a given stimulus 

vowel and maximized when listeners choose all 

response vowels equally. 

2. EXPERIMENTAL METHODS 

The vowel categorization experiments include a total 

of nine test conditions, which differed in the accent of 

the stimulus vowels and the accent of the listeners. 

We refer to the conditions with two letter codes, e.g. 

“AZ”; the first letter denotes the accent of the listener 

group and the second denotes the accent of the 

stimulus items. Five conditions involved Australian 

listeners: AA, AL, AZ, AY, AN. The other four 

involved listeners from the other accents listening to 

their own accent: LL, ZZ, YY, NN. 

2.1. Listeners 

A total of 139 listeners participated in the study: 12-

17 per condition across nine test conditions. Listeners 

were recruited from local university communities in 

Western Sydney (A), Christchurch (Z), SE London 

(L), Newcastle (N), and Yorkshire (Y).  

2.2 Stimuli 

Listeners were presented with vowels embedded in 

nonce words. For the target nonce words, 19 English 

vowels (all monophthongs, diphthongs, and vowels 

before orthographic <R>, e.g., NORTH) were inserted 

into the frame /ˈzVbə/, which yields no real English 

words. Twelve speakers each (6f, 6m) from western 

Sydney, southeast/east/north London, Christchurch, 

New Zealand, Sheffield/ Leeds, York, Yorkshire, and 

Newcastle (UK) produced each nonce word six times. 

Two females and two males of each accent were 

chosen for the perceptual task stimuli, and two tokens 

per nonce word per speaker were selected, judged as 

representative of that accent by a phonetically trained 

researcher familiar with the accent. Tokens were 

extracted with 100 ms onset and offset buffers; a ramp 

and damp were imposed on the initial and final 20 ms. 

Tokens were normalized to 65 dB.  

For each target vowel, a monosyllabic word was 

chosen to serve as one of the keywords in print that 

were presented onscreen in an array of response 

options. Most were of the form /bVd/ or /pVd/, unless 

that gave obscure, ambiguous, or no words (e.g., 

standard English has no such words for the FOOT 
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vowel, so we used <hood>). Nodes in Figure 1 are 

labelled with the response words. 

2.3 Procedure 

In all conditions, participants first heard a short story 

of ~6 minutes told by speakers of their native accent. 

Following the story, they then categorized nonce 

word vowels, which were presented, depending on 

condition, in either their own accent or in another of 

the test accents. 

On each test trial, participants heard a single nonce 

token and saw the vowel keyword grid displayed on 

a computer monitor. They clicked on the keyword 

with the vowel that best matched the stressed vowel 

in the nonce token, then rated how well the nonce 

token represented the chosen vowel (1 [poor] to 7 

[excellent]). Keyword order on the grid was 

randomized across participants, but was kept constant 

for a given participant. To familiarize them to the task 

and grid, listeners completed 20 randomized training 

trials with nonce tokens from the same speakers who 

told the pre-test story, one per nonce word. They then 

completed the categorization test of 160 trials (20 

nonce words x 2 tokens x 4 speakers), presented in 

random order via E-Prime (v. 2.0.8.22). For all 

conditions, nonce word speakers were different from 

the speakers used in the pre-test story. 

3. RESULTS 

Table 1 shows Response Entropy and Information 

Loss for each accent in the conditions with Australian 

listeners. The Response Entropy is similar across 

accents and approximates the theoretical maximum, 

indicating that listeners are fairly balanced in their use 

of the response grid. Information Loss varied across 

accents. At 37.3 bits, it is lowest for the listeners’ own 

Australian accent and increases gradually as the 

accent varies from London (38.0) to New Zealand 

(39.9), Yorkshire (39.9) and Newcastle (42.7).  

   
Table 1: Response Entropy and Information Loss 

for each accent based on Australian listeners. 

 

Accent condition Response 

Entropy  

Information  

loss 

Australia (AA)  4.13 37.3 

London (AL) 4.12 38.0 

New Zealand (AZ) 4.17 39.9 

Yorkshire (AY) 4.13 40.7 

Newcastle (AN) 4.08 42.7 

 

The high Information Loss (~40 bits) relative to 

Response Entropy (~4 bits) indicates noisy 

transmission of vowels from speakers to listeners in 

the context of this task. In natural listener conditions, 

redundancy from lexical, contextual, and other 

factors facilitates accurate transmission of vowels. A 

key mathematical proof from Information Theory is 

that redundancy (in bits) equal to the Information 

Loss ensures accurate message transmission in a 

noisy channel [5]. Notably, the cline in Information 

Loss across accents mirrors claims about perceptual 

similarity between Australian vowels and those of the 

other accents, which have been based on vowel 

formant measurements, sociophonetic 

characterizations of the accents, and cross-accent 

vowel perception [7]. 

Figure 1 provides examples of tanglegrams 

comparing hierarchical clustering of confusion 

matrices. Since the Response Entropy is just over 4 

bits, there are on average, just over four binary 

branches per vowel. The tanglegrams compare AA-

ZZ (top) and AA-AZ (bottom). In both cases, AA is 

on the left. The ways in which AA differs from ZZ 

are larger than the ways that AA differs from AZ. 

These differences are apparent visually as longer lines 

linking vowels in the top, e.g., for vowels in ‘bud’ and 

‘bird’, than the bottom part of the figure. The 

correlation between conditions is quantified using 

Baker’s Gamma correlation coefficient. 

 
Figure 1: (top) tanglegram comparing AA (left) and 

ZZ (right); (bottom) tanglegram comparing 

AA(left) and AZ (right) 
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Table 2 reports Baker’s Gamma for comparisons 

across test conditions. We focus on two types of 

comparison: 

1. Accent differences: AA is compared with 

LL/ZZ/YY/NN to probe accent differences in 

perceptual structure relative to Australian. 

2. Listener effects: AA is compared with 

AL/AZ/AY/AN, holding listener group (A) 

constant while varying the accent of the vowels; 

relative to the accent baseline, these comparisons 

reveal the contribution of listener experience to 

perceptual structure. 

 

We first report Baker’s Gamma for the accent 

baseline comparison (1). The perceptual structure that 

Australians impose on their own vowels was most 

similar to the structure that Yorkshire listeners 

(0.436) imposed on their own native-accent 

Yorkshire vowels, followed by New Zealand (0.420), 

Newcastle (0.385), and then London (0.270). This 

pattern is somewhat surprising because it does not 

match with measures of accent similarity, as reported 

in past work, or with the pattern of information lost 

(Table 2). To assess reliability across subjects, we 

sampled 8 subjects per condition and re-ran the 

analysis 10,000 times with different samples. The 

average Baker’s Gamma with standard deviation 

across runs in italics is reported in the second row of 

Table 2. This analysis presents a different picture. On 

average, the perceptual structure of listeners is fairly 

consistent across accents: AA-LL (0.35), AA-ZZ 

(0.35), AA-YY (0.34), AA-NN (0.39).  

 
Table 2: Baker’s Gamma assessing the correlation 

between hierarchal clustering across conditions.  
 LL AL ZZ AZ YY AY NN AN 

AA 

(total) 

0.27 0.63 0.42 0.60 0.44 0.44 0.39 0.44 

AA 

(samp) 

0.35  

0.22 

0.45 

0.20 

0.35 

0.19 

0.44 

0.19 

0.34 

0.12 

0.47 

0.16 

0.38 

0.17 

0.45 

0.15 

 

Comparison testing for listener effects (2) show 

that Australian listeners tend to impose their native 

accent perceptual structure on non-native accent 

vowels; across our entire sample (first row Table 2), 

the degree of this effect appears to vary across 

accents. However, the averages from resampling 

reveal pretty consistent effects: AA-AL 0.45; AA-AZ 

0.44; AA-AY 0.47; AA-AN 0.45.  Australian 

listeners’ pattern of responses for non-native accents 

tended to resemble the pattern for their own vowels 

(AA) regardless of the accent. 

4. DISCUSSION 

We applied analytical tools from Information Theory 

to quantify cross-accent speech perception. Across 

accents, Australian listeners exhibited similar 

Response Entropy, which approximated the 

theoretical maximum. This indicates a largely 

unbiased selection of the 19 choice words offered as 

response categories. The measure of Information 

Loss converged with conclusions about accent 

similarity (of vowels) based on patterns of 

categorization accuracy—past work showed that 

Australian listeners were most accurate categorizing 

their own vowels, followed by London, New Zealand, 

Yorkshire, and Newcastle [7]. Information Loss takes 

into account the entire set of responses, not just 

accuracy, but converges on the same characterization 

of accent similarity. In this case, less certainty (more 

response variation) goes hand in hand with lower 

accuracy.  

     Response Entropy shows that the different vowel 

categories can be encoded with just over four bits (or 

binary choices). Empirical clustering of responses in 

the confusion matrices revealed how the bits are 

distributed in each condition. In large part, listeners 

from the different accents imposed similar structure; 

more precisely, to roughly the same degree across 

accents, the perceptual structure that Australian 

listeners impose on Australian vowels was similar to 

the structure that other listeners impose on their 

native accent.     

A second finding was that Australian listeners 

tended to confuse vowels in similar ways across 

accents, even as the phonetic realization of those 

vowels and, by corollary, phonetic similarity to other 

vowels, varied. This was indicated by higher 

correlations between, e.g. AA-AX, where X stands 

for any of the other accents, than for AA-XX. In other 

words, the errors that Australian listeners make 

categorizing vowels in unfamiliar accents was similar 

to the errors that they make on their own accent but 

different from the errors that native listeners of X 

make on their own accent) This was true for all 

accents, even as Information Loss varied.  

Taken together, the analyses presented here allow 

us to contextualize cross-accent perceptual results 

reported in past work [7, 11-14]. The progressive 

decrease in vowel categorization accuracy by 

Australian listeners from Australian to London to 

New Zealand, Yorkshire and Newcastle accents is 

related to progressive increases in uncertainty (Table 

1). This follows in part from listeners’ persistence in 

imposing expected patterns of perceptual similarity 

even in the face of stimulus variability. The tools of 

Information Theory provide succinct quantification 

of this pattern. More broadly, tacit recognition of 

these conditions, in particular increased Information 

Loss, driven by, e.g., the lexical level [15-17] may be 

preconditions for perceptual learning—an issue we 

plan to pursue in future work.  
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