
ACCURACY ASSESSMENTS OF HAND AND AUTOMATIC 
MEASUREMENTS OF ULTRASOUND IMAGES OF THE TONGUE 

 
D. H. Whalen1,2,3, Jaekoo Kang1,2, Rion Iwasaki1,2, Ghada Shejaeya1,2, Boram Kim1,2, Kevin D. Roon1,2, Mark K. 

Tiede2, Jonathan L. Preston2,4, Emily Phillips1,2, Tara McAllister5 and Suzanne E. Boyce2,6 
 

1City University of New York; 2Haskins Laboratories; 3Yale University; 4 Syracuse University; 5New York 
University; 6University of Cincinnati 

dwhalen@gc.cuny.edu; jkang@gradcenter.cuny.edu; riwasaki@gradcenter.cuny.edu; gshejaeya@gradcenter.cuny.edu; 
bkim@gradcenter.cuny.edu; kroon@gc.cuny.edu; tiede@haskins.yale.edu; jopresto@syr.edu; emily.phillips@yale.edu; 

tkm214@nyu.edu; BOYCESE@ucmail.uc.edu 
 

ABSTRACT 
 
Ultrasound measurements of the tongue have become 
increasingly useful in phonetic research, but the 
consistency of hand measurements and the accuracy 
of automatic measures have yet to be extensively 
evaluated. Here, we examine three automatic 
methods (EdgeTrak, active contours (snakes) and 
SLURP) against hand measurements of two datasets 
made by three researchers. Discrepancies (errors) 
were calculated as the shortest distance between two 
contours. Results for adult speakers indicate that the 
three researchers were consistent with themselves and 
each other (mean errors < 1 mm) but higher for child 
data (errors < 5 mm). Automatic methods were 
initially consistent with hand measurements, but 
snakes and EdgeTrak were increasingly less 
consistent at later points. The results indicate that the 
SLURP method can be used for automatic extraction 
of full tongue shapes from ultrasound images. 
Intermittent hand correction of automatic procedures 
is also recommended. Future work will include more 
systems and more speakers. 
 
Keywords: ultrasound, tongue shape, automatic 
measurements, reliability, accuracy. 

1. INTRODUCTION 

The tongue is a major speech articulator, but its 
measurement is challenging due to its location within 
the mouth. One of the various methods that have been 
devised for quantification of tongue movement is 
ultrasound [13, 23, 28]. This method has the 
advantages of being relatively inexpensive, well-
tolerated by a wide range of participants [14, 27], and 
providing extensive coverage of the tongue. 
Disadvantages include difficulty of stabilization of 
the probe relative to the fixed vocal tract hard 
structure, relatively low sampling rate, and 
synchronizing with the audio signal. 

Perhaps the major disadvantage of ultrasound is 
the difficulty of extracting the tongue surface from 
the recorded signal [1, 6, 15]. Many studies can be 

performed without extracting the entire shape [17, 26] 
or by selecting critical frames [9, 19]. However, some 
analyses, such as the exploration of pivots [7] or 
gemination processes [24], require dynamical data. In 
these cases, measurements of most if not all frames in 
an utterance are required. If measuring the required 
frames by hand is the ideal, it is prohibitively labor-
intensive, and therefore (semi-)automated procedures 
for defining tongue contours are often used. Knowing 
the accuracy and reliability of automated 
measurements of the entire tongue surface is therefore 
crucial to many phonetic investigations, but previous 
systematic comparison of the existing automated 
procedures [e.g., 11] did not include validation of the 
single hand measurement that was taken as the 
ground truth. 

We compared three semi-automated procedures—
EdgeTrak [12], an edge-constrained active contour 
(snake) model (EPCS) [22] and SLURP [10, 11]—
against the hand measurements of three phoneticians. 
Note that EPCS was designed for real-world visual 
parsing, and our novel application to ultrasound 
images was not a specific concern of its creators.  

2. METHOD 

Ultrasound images previously collected for research 
purposes from two different studies were re-
examined for this test. One was a study of 
palatalization of adults’ Russian consonants [20], and 
the other was of English-speaking children, either 
saying a variety of words or short sentences [18].  

2.1. Stimuli 

The Russian stimuli were produced by four native 
speakers from Moscow (aged 27-32, two female). 
Utterances were C1VC2 syllables including both 
actual and nonce words produced in the carrier phrase 
[a ɛtə _] ‘and this is a _’. Stimuli included 6 word- 
and utterance-final consonants [t, j, s, sj, lj, r] where 
the preceding vowel was always [a] and C1 was 
always [m], and 4 vowels [i, u, ɛ, a] where both 
flanking consonants were [p], e.g., [pap]. The first 
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repetition of each utterance (out of five produced by 
each speaker) was used for analysis. Midsagittal 
plane images of the lingual articulation were recorded 
using an Ultrasonix SonixTouch machine (BK 
Ultrasound, www.bkultrasound.com) with a C9-5/10 
micro-convex transducer at a frame rate of 60 Hz.  

The English-speaking child utterances were 
individual words (4 speakers, aged 4-6 years) or 
sentences (3 speakers, aged 10-12 years). Two of the 
younger children and all 3 of the older children had 
been diagnosed with a speech sound disorder. A 
Siemens Acuson X300 ultrasound with C8-5 or C6-8 
transducer was used with a frame rate of 36 Hz. 
Stimuli analyzed for the younger speakers were 10 
words with varying tongue shapes (2 repetitions per 
word). Stimuli for the older speakers were 5 
sentences, split into 2 halves to make 10 files. Each 
file for both sets was measured twice (without the 
measurer knowing when a file was repeated). 

The end of each utterance to be analysed was 
identified from the acoustics using annotation in Praat 
[2]. The 42 ultrasound video frames preceding the end 
of the target utterance (corresponding to ~700 ms) 
were extracted into individual video files. This 
amount of time ensured that all extracted frames were 
of the tongue during speech production for all but the 
single word productions; thus some frames were 
during rest. The video files were named such that the 
identity of the stimulus was not indicated. Each file 
was then duplicated so that it would be measured 
twice. For the Russian data, 10 stimuli x 2 copies x 4 
speakers yielded 80 utterances to be analyzed. For the 
English data, 10 stimuli x 2 copies x 4 speakers x 2 
ages yielded 160 utterances to be analyzed. 

2.2. Hand measurements 

The three hand measurers were phoneticians with 
previous experience in tracing ultrasound images of 
the tongue. Each measurer traced 9 contours by hand 
for each file: the first frame of the file, then frames 5, 
10, 15, 20, 25, 30, 35 and 40 (every 83 ms for the 
adult data, 139 ms for the child data). Hand-measured 
contours were made using GetContours [25]. 
Measurers selected 16 “anchor points” along the 
underside of the white curve corresponding to the 
tongue surface. Each contour was traced starting at 
the most anterior visible point of the tongue surface 
behind the jaw shadow, and continuing until either the 
posterior end of the image or the hyoid shadow was 
reached. GetContours used those 16 anchor points to 
constrain a cubic spline of 100 equally spaced xy 
coordinates, which defined each contour. Although 
not all of the data points were defined by hand, the 
matching to the anchor points was highly constrained; 
therefore, we label these as hand measurements. 

2.3. Automatic systems 

Automatically fitted contours were created with 
EPCS, an active contours (snake) [22] implemented 
as a GetContours plugin using the hand-measured 
contour of the first frame of each file as the starting 
point (“seed”). In this implementation, the snake 
endpoints were constrained to lie on a line orthogonal 
to the last two anchor points at each end of the seed. 
The algorithm tracked contours for all of the frames 
in each file, using anchor points equally spaced along 
each fit for the current frame as the seed for the next. 

EdgeTrak also defines contours as 100 xy 
coordinates. In order to ensure the same starting point 
for the automatic systems, the xy coordinates of the 
hand-measured contour for the first frame of each file 
were exported from GetContours and imported into 
EdgeTrak. The automated contour detection in 
EdgeTrak, also an active contour model, was then 
used to generate contours. 

The third system tested was SLURP [10], which 
refines the snake algorithm by optimizing across 
multiple fits using a particle filtering algorithm [11]. 
Although still under active development, it has 
already shown promise, especially given that it does 
not need an extensive training set. 

For logistical and technical reasons, it was not 
possible to test the automatic systems on the child 
data. Given the larger within-measurer error, we can 
predict that the automatic system would have a more 
difficult time than with the adult data. 

2.4. Comparisons made 

Hand measurements were compared to every other 
hand measurement, giving 1 within-measurer value 
and 4 across-measurer values for each frame. 
Automatic measures were compared to all six hand 
measured shapes at each of the 9 frames that were 
done. This allowed us to compare the change in 
accuracy of the automatic measures as the seed frame 
became more distant. 

2.5. Discrepancy (error) measurements 

Errors were calculated as the smallest distance 
between measurement points on the tongue surface. 
Because all systems produce 100 x-y points, each 
point of one surface was compared with each on the 
other. The average shortest distance between paired 
points was taken as the error. Because the length of 
the measured tongue surface was not always the 
same, it was sometimes the case that two points on 
one surface will be closest to the same point on the 
other. However, at the ends of the surface, if multiple 
points were closest to the endpoint of the other 
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surface, only the innermost point is used; extra points 
are excluded (see Fig. 1). 

A further assessment was made using canonical 
correlation between matched contour point pairs.  
Similar to PCA, this method remaps the data onto two 
“canonical” variables such that the first maximizes 
correlation overall, and the second finds the 
remainder. The second value, reported here, 
represents the lack of correlation between given 
contours. As in any correlation, values range from 1 
(perfect correlation) to -1 (perfect anti-correlation). It 
is complementary to our minimum distance measure 
because it reflects how well two contours track one 
another in shape. 

 
 

Figure 1: Examples of error measures between two 
measurements of one artificially created tongue 
shape (nominal anterior to the right). The blue curve 
has 10 measurement points, the orange, 7. Arrows 
with solid lines indicate error magnitude. Dashed 
lines indicate measures at the extremes of the blue 
curve that are ignored. Note that two points in the 
middle of one curve can map onto a single point in 
the other curve (orange arrows). 

 

 
 

Table 1: Consistency (mean distance between 
tongue measurements, in mm). “Across” is mean of 
8 comparisons. 

 
Measurer Within Across 
M1 (Russian) 0.50 0.50 
M2 (Russian) 0.43 0.52 
M3 (Russian) 0.41 0.55 
M1 (child) 4.12 7.05 
M2 (child) 5.10 ---- 
M1 (young/old) 5.3/4.6 7.7/5.8 
M2 (young/old) 4.0/4.4 ---- 

 

3. RESULTS 

Results were considered for three tests: consistency 
of each hand measurer across the two tokens (within-
M); consistency across hand measurers (across-M), 

and consistency of the automatic measurement 
(separately for each of the 3 systems) compared with 
the hand measurers for the adult data (Auto). Auto 
included a time series factor (levels 1-9, cor-
responding to frames hand-measured frames). The 
dependent measurement was the average error for 
each of the points on the tongue surface (see Fig. 1).  

For the within-M, errors were at most 0.5 mm for 
the Russian data and 5.1 mm for the child data (see 
Table1). Across-M errors were, as can be expected, 
larger, but still less than 0.6 mm for the Russian data 
and 7.1 mm for the child data (Table 1). The adult 
differences correspond to an average of 2-3 pixels’ 
worth of distance on the image. 

Canonical correlations for adult data ranged from 
.93 to .97, with no further pattern apparent. Such high 
correlations confirm that the measurers and the 
automatic methods were in good agreement.  For the 
child data, the values ranged from .83 to .87 for 
within- and across measurer; this is good agreement, 
but less so than for the adult data. Canonical 
correlations make fewer assumptions about the 
relevant portion of the surface than our first method, 
but still shows substantial agreement between 
measures and between the hand and automatic results. 

Figure 2 shows the average distance between the 
shared portion (see Fig. 1) of the tongue edges found 
by our algorithms for the Russian (adult) data. The 
EPCS algorithm grew increasingly divergent from 
hand measurements in later frames. EdgeTrak had a 
somewhat similar trend but with smaller divergences. 
SLURP had little dropoff in consistency through the 
40 frames measured. The magnitude of the 
differences was fairly small (about 5 mm for EPCS, 
about 1 mm for the others.) 

Figure 2: Change in discrepancies between 
automatic and hand measurements over time.  

 
 
Our algorithm needs to be supplemented by an 

assessment of the endpoints. As can be seen in Figure 
3, large discrepancies can be masked by ignoring end 
lack of agreement on the endpoints. SLURP was less 
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conservative than the hand measurement in the 
anterior region, while the hand measurement was less 
conservative in the posterior region. However, the 
near overlap extends over most of the tongue surface. 
By contrast, the EPCS algorithm was relatively close 
in length but differed by 10 mm for a long stretch. 
EdgeTrak was close in the common region, but had a 
sizable (ca. 2 cm) surface in the anterior region that 
was lacking in the hand version, and lacked almost as 
much in the posterior region. Thus the small deviation 
reported for this token is misleading. 

Figure 3: Examples of discrepancies at a single 
frame for a single token for the three methods.  

 

4. DISCUSSION 

Our results show that hand measurements by trained 
phoneticians were quite reliable when the quality of 
the ultrasound images was good, and they support the 
standard in the field of using hand-measurements as 
the “gold standard” for defining tongue contours. 
However, when the image is less clear, human 
measurers disagree more, due to the fact that the 
“ground truth” is harder to establish in images with 
poor quality. Here, the consistency was less for the 
images from the child speakers, as can be expected 
due to the lack of head restraints and consequent 
movement of the speaker during a trial. Current fixed-
probe systems are not usable with young children 
[21], and the clinical setting of the current stimuli 
further benefitted from the freedom from constraints. 
While comparable results have been found for hand-
held and fixed systems for adolescents [30], the extent 
of movement artifacts is currently unknown, even 
when trials with obvious head movements are 
excluded [16].  

The (semi-)automatic methods tested were fairly 
accurate for the adult data. Our current algorithm, as 
pointed out above, does not adequately address 
discrepancies in the length of the extracted surface. 
Revisions of the algorithm will address this issue.  

In practice, researchers do not allow the semi-
automatic measures to operate for 750 ms without 
correction, so the last measurement points in Figure 2 
are simply confirmation that once a measurement 
diverges, it will continue to do so. The longer the 
method can continue without correction, however, the 
more useful it will be. The 40 frames that are within 
1 mm for SLURP would allow a relatively quick 
process for ultrasound data. 

There are other factors that would potentially 
affect the results of the semi-automated procedures, 
which we did not directly manipulate in this study: 
image quality, frame rate of the ultrasound video, 
frequency of adjustments to the automated 
contouring, etc. The degree of accuracy required for 
a specific purpose is also a consideration; if more 
approximate measures are sufficient to make a point, 
then added accuracy is not essential. 

5. CONCLUSION AND FUTURE DIRECTIONS 

We conclude that hand measurements are quite 
consistent for adult data (discrepancies of < 0.5 mm 
in our data) but less so for child data (discrepancies 
of < 8 mm). Automatic measures by the SLURP 
method, which takes a hand measurement as a seed, 
are quite accurate for many frames after the seed 
frame. For our adult data, this would often be 20-40 
frames (333-666 ms).  

Future work will expand the number of speakers 
and tokens analyzed. Comparisons are planned for the 
Articulate Assistant Advanced system [29], which 
will require changes for comparing procedures.  

The length of the surface needs to be compared, 
with the discrepancies at both ends assessed. It is 
likely that a large discrepancy at one end of the 
surface will be considered more of an error than that 
same length split into the beginning and end of the 
surface. The algorithm for assessing the discrepancy 
remains to be developed, as it is not clear how much 
a measurement should be penalized for missing a 
relevant portion or, indeed, whether it is possible to 
create a penalty for finding a surface that is not 
present to the eye of the researcher. 

Automatic extraction of tongue surfaces allows for 
greater use of ultrasound images. Although other 
methods, generally using PCA, that do not require 
edge extraction have been proposed [3, 4, 5, 8], edges 
provide the input to many applications. The current 
results indicate that (semi-)automatic methods can be 
accurate enough for many purposes. Our results also 
indicate that, for our current datasets, hand measurers 
can be quite consistent for adult data but less so for 
child data. Monitoring of automatic edges is therefore 
to be recommended, as is checking the consistency of 
hand measurements. 
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