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ABSTRACT 

 

Static cues such as formant measurements obtained at 

vowel midpoint are regularly taken as the main 

correlates for the identification of monophthong 

vowels. However, dynamic cues have been shown to 

yield better separation of vowels in some languages. 

This study aims to evaluate the role of static vs 

dynamic cues in Hijazi Arabic (HA) vowel 

classification, with vowel duration and F3 as 

additional cues. Data from 12 male HA speakers 

producing eight HA vowels in /hVd/ syllables were 

obtained and evaluated using discriminant analysis. 

Results show that dynamic cues, particularly the 

three-point model, had higher classification rates 

(+98%) than the remaining models. Vowel duration 

had a significant role in classification accuracy 

(+11%). Our results are in line with dynamic 

approaches to vowel classification but also highlight 

the relative importance of cues across languages; 

here, the primacy of vowel duration was stark, 

potentially reflecting the role of length in Arabic 

phonology. 

 

Keywords: Static cues, dynamic cues, discriminant 

analysis. 

1. INTRODUCTION 

Formant frequencies are crucial acoustic correlates 

for the identification of vowels. For many years, 

however, the main approach to describing vowels has 

focused on measuring the first two formants (F1 and 

F2) at mid-point (e.g. [1], [21], [24], among others). 

This static approach was followed because it was 

believed that a vowel’s midpoint is the target position 

which a speaker tries to reach when he/she produces 

vowels and where a minimal shift in formant value is 

seen [24]. Nevertheless, subsequent studies have 

reported that other cues such as dynamic cues—in 

particular Vowel-Inherent Spectral Changes (VISC) 

e.g. [3], [19], [22] and the three-point model e.g. [9], 

[11], [13], —contain essential information, not only 

for diphthongs but also for monophthong vowels. For 

instance, discriminant analysis yields better 

separation of monophthong vowels based on their 

acoustic measurement when the acoustic parameters 

are taken from more than one location.  

VISC is defined by [22] as the “relatively slowly 

varying changes in formant frequencies associated 

with vowels themselves”. It is taken from two 

locations: one around the vowel onset (at 20%) and 

the other near the vowel offset (at 70-80%) over the 

full duration of the vowel to eliminate the effects of 

surrounding consonants [11], [22]. VISC has three 

primary accounts, namely a) onset + offset (offset 

model, henceforth), in which the values of the final 

formant are prioritised, b) onset + slope (slope model, 

henceforth), which is based on the premise that the 

rate of change over time is the significant cue, and c) 

onset + direction (direction model, henceforth), 

which focusses on the direction of formant frequency 

changes [8], [18], [22]. 

Many studies have compared static spectral 

features with either one of the VISC models 

(particularly offset) e.g. [10], [11], [12] or all of VISC 

approaches e.g. [3], and concluded that using VISC 

models leads to higher correct classification rates than 

using one point. Moreover, other studies such as [25] 

and [26] found VISC models to be helpful in 

improving the separation between lax and tense 

vowels in English. Regarding the offset, [15] found 

that Chinese speakers, who have a sparse vowel 

system, exhibited significantly greater spectral shifts 

in their productions of vowels than Korean speakers, 

who have a dense vowel system [16], [17]. Another 

line of studies e.g. [7],  [9], [11], [13], [27], [28], has 

found a more accurate vowel separation of 

monophthong vowels when using the three-point 

model (where formant measures are taken from three 

locations, namely, at 20% onset, 50% midpoint, and 

80% offset during vowel duration) than the midpoint 

model.  

Beyond the first two formants, whose major 

acoustic correlates of vowel identification all of the 

aforementioned research has emphasised, the role of 

third formant (F3) and vowel duration as additional 

cues have been reported to play a role in vowel 

discrimination e.g. [11], [12], [26]. For example, [11], 

who collected their data from /hVd/ syllables, noted 

that the inclusion of vowel duration increased the 

separation accuracy of the vowel by 12% in some 

cases; F3 appeared to have an influence, but not more 

than the inclusion of vowel duration.  

Within research on Arabic, only one dynamic 

study of vowels has been carried out, but its emphasis 
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was not on intrinsic dynamic cues; rather, it was 

focussed on looking at extrinsic dynamic vowel 

variation (see [2]). Hence, this study is the first step 

into the field of intrinsic dynamic cues in the Arabic 

language. With respect to HA vowels, [4], [14], and 

[20] classified HA vowel production as the following: 

/i:, a:, u:, i, a, u, e: and o:/. As can be gleaned from the 

phonemic symbols, Arabic is a quantitative language 

that relies on vowel duration to form phonemic 

contrasts [1]. However, there is a debate regarding the 

tense/lax aspect of Arabic vowels, and a few studies 

have indicated a difference in both quantity and 

quality between vowels e.g. [1], [2]. 

The purpose of the current study is to investigate 

to what extent the static and dynamic cues, including 

all VISC models and the three-point model, improve 

the classification of HA vowels. A second aim it to 

explore to what extent vowel duration and F3 act as 

additional cues to classification accuracy. Using these 

results, we also explore whether HA vowels pairs 

which differ in phonological length exhibit a 

difference in term of quality as well as quantity.  

2. METHODOLOGY 

The participants were 12 male native HA speakers, 

aged 18 to 30. Recordings were made on a Zoom 

digital H1 Handy Recorder with a sampling rate of 

44,100 Hz and 16-bit amplitude resolution. The HA 

speakers were asked to produce all vowels in a 

monosyllabic /hVd/ context within the phrase /ktoːb 

marteːn/, which means “Write twice” (see Table 1). 

Together, the HA stimuli comprised 5 repetitions × 8 

vowels × 12 HA male participants = 480 items.  

 
Table 1: The set of target words presented to the 

participants (column 2) alongside nearest real word 

where the target word use was a non-word. 

 

       

 

     

 

 

 

 

 

 

It was difficult to put all of the target vowels into real 

/hVd/ words in HA, therefore, the nearest real HA 

words which have the same target vowels in the 

nonsense /hVd/ syllables were used such as /xoːd/ and 

/zeːd/. Acoustic analysis was undertaken using 

PRAAT [5]. The vowel duration and the first three 

formant values were automatically extracted with the 

aid of a PRAAT script. The onset and offset of the 

vocalic segment were manually labelled for each 

/hVd/ syllable by following the formants 

homogeneity method. The vowel duration between 

the start and end boundaries was measured (in ms). 

F1, F2, and F3 were extracted from one location (50% 

for the static model), two locations (20% and 80% for 

VISC models), and three locations (20%, 50%, and 

80% for the three-point approach) across the vowel 

duration. For the offset model, the first three formants 

were computed as 

 

(1)  Offset80% - Onset20%  

 

whereas for the direction model, the first three 

formants were computed as 

 

(2) (Offset80% - Onset20%), 

 

and for the slope model, the first three formants were 

computed as 

 

(3) (Offset80% - Onset20%)/duration 

                      

All formant values were checked manually to 

ensure the accuracy of the results, and any errors in 

formant estimation were corrected by hand. 

Discriminant analysis was conducted to evaluate the 

extent to which the static model, VISC models, the 

three-point approach, and other acoustic feature sets 

(F1, F2, F3, and vowel duration) improved vowel 

classification as reported by [3], [11], [12], among 

others. A post hoc t-test was used to determine the 

statistical significance of the study results. 

3. RESULTS 

3.1. Static and dynamic cues 

Beginning with the static model, Figure 1 shows a 

clear and significant separation in the vowel space 

between the HA vowels, in particular short and long 

pairs (p<.001). The results also showed lax vowels to 

be more centralised than their long counterparts. 

 
Figure 1: Scatterplot of the midpoints of the first 

two formant values of Hijazi Arabic vowels. 
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     Regarding dynamic cues, particularly the offset 

model, the amount of overall spectral shifts for HA 

vowels was significant (see Figure 2; in particular 

between the first quartile, median, and third quartile). 

 
Figure 2: Boxplot of the offset model for the eight 

HA vowels (F1- above and F2 - below). 

 
 

 

 

 

 

 

 

 

 

 

 

 

      The results of the direction and the slope model in 

Figure 3 varied among the HA vowels. Most 

importantly, the direction and slope of the F1 spectral 

change of short vowels displayed a significantly 

decreasing spectral shift compared to their long 

counterparts. 

 
Figure 3: F1 results of the direction model (above) 

and the slope model (below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Discriminant analysis 

The results of the three proposed approaches were 

evaluated via Discriminant Function Analyses which 

were run in three stages: the classification accuracy 

of all eight HA vowels, followed by the correct 

classification rates of the lax and tense HA vowels 

(/i,/ /a/, /u/ vs /i:/, /a:/, /u:/) as a group and finally the 

HA vowel pairs (/i:/ vs /i/, /a:/ vs /a/ and /u:/ vs /u/). 

       In general, the discriminant analysis results 

showed that taking three measurements from the 

vowel resulted in the highest classification accuracy 

(from 93% to 97%) for all eight HA vowels, followed 

by the offset model (from 91% to 97%), the static 

cues (from 90% to 96%), then other VISC models, 

namely, the slope model (from 61% to 74%), and the 

direction model (from 57% to 74%). The correct 

classification rate for the duration alone was 24% (see 

Table 2). 

Table 2: Discriminant analysis results showing the 

classification accuracy of vowels trained on various 

combinations of parameters (“No Dur” indicates 

that the duration was not included, whereas “Dur” 

means the duration was included). 

 

 

 

 

 

 

 

 

  In terms of the classification of lax and tense HA 

vowels as a group, which showed a higher 

improvement in the classification accuracy in 

comparison to Table 2, the three-point approach and 

the static model obtained the best rates (97–99% and 

96–99%, respectively), followed by the offset model 

(between 94% and 98%), then the slope model 

(between 77% and 91%) and direction model 

(between 73% and 90%). Additionally, the tense/lax 

vowel group was classified with 31% accuracy based 

on duration (without formant values) (see Table 3). 

 
Table 3: The correct classification rates of HA 

vowels (lax and tense). 

 

 

 

 

 

 

 

 

Running a discriminant analysis on vowel pairs 

naturally presents a noticeable improvement in the 

classification accuracy compared to Table 2 and 3. 

The three-point model had a better rate (99%), 
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followed by the static model (between 96% and 99%), 

then by the offset model (between 95% and 99%) 

whereas it was between 78% and 99% for the slope 

model, and between 74% and 99% for the direction 

model. In addition, the classification rate of HA 

vowel pairs was between 96% and 99% for the 

duration alone for each of these pairs (see Table 4). 

 
Table 4: The correct classification rates of HA 

vowel pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

The inclusion of vowel duration with the formant 

frequencies in any model led to a substantial 

improvement in vowel separation up to 25% (average 

+11%) while F3 improved the discrimination rate by 

between 1% and 4% overall (average +1%). 

 

4. DISCUSSION AND CONCLUSION 

The data demonstrate that the three-point model is the 

best model and is the most accurate for classifying 

HA vowels in all three stages (with average of 98.1%) 

in comparison to the other proposed models. Such a 

finding is in line with previous studies e.g. [7], [9], 

[11], [13], [27], [28]. The offset model, on the other 

hand, comes in second (with average of 97.5%), 

which also supports other research e.g. [11], [10], 

[12]. Interestingly though, the data reveal that the 

static approach was sufficient, obtaining higher 

accuracies (with average of 97.1%), and was superior 

to the other proposed VISC models based on direction 

and slope. Such a result is contrary to expectations of 

other studies e.g. [3], [22]. The interpretation of this 

result could be illustrated as follows: those studies 

which found that direction and slope models 

outperformed single-point models in classification 

accuracy examined both models in different phonetic 

environments than /hVd/, and according to [6], [9], 

[23], [26], the /hVd/ context is acoustically least 

comparable to other consonantal contexts. [6] found 

that by using the discriminant analysis, the 

recognition scores are least accurate from tokens 

taken from /hVd/ compared to other contexts. This 

could be due to the phonological voicing status of the 

following coda, which might significantly alter 

spectral characteristics and vowel duration. Putting 

such findings together, it seems to be the case that 

there are experimental results in which vowels with 

other consonantal context transitions, which provide 

additional information regarding the vowel’s 

phonetic identity, are identified more accurately by 

all VISC models than vowels in isolation or /hVd/ 

[23], which do not contain as many transitions. 

Hence, it is likely the differences in findings between 

this paper and those of other studies e.g. [3], [22] are 

due to contextual and language differences. 

The slope and direction models provide a better 

overview of the characterisation of dynamic cues of 

the HA vowels, particularly the tense/lax pairs. Such 

a result is consistent with [25] and [26]. In addition, 

such results support other studies e.g. [1], [2], which 

argue that Arabic tense and lax vowels are different 

in terms of their quantity as well as their quality. This 

study found that HA vowels displayed great spectral 

movement and that due to that the low-density 

languages would have more space and freedom to 

produce their vowels compared to high-density 

languages; such a consequence is in agreement with 

other studies e.g. [15], [16], [17]. Our results 

demonstrate that the effectiveness of the first two 

formant frequencies is indisputable for the overall 

classification of HA vowels. Although duration alone 

was not sufficient for the distinction of all HA vowels 

combined (Table 2) or for the distinction between 

tense-lax as a group (Table 3), when combined with 

formants, it adds to the overall classification of HA 

vowels. However, when looking at the tense-lax pairs 

(Table 4), the results show that the role of formant 

patterns and vowel duration is almost comparable, 

which is expected as Arabic vowel pairs are 

extensively distinguished by duration [1]. Therefore, 

this study highlights the importance of duration in HA 

vowels due to the prominent role of phonological 

length in Arabic phonology. This conclusion is in line 

with many previous studies e.g. [11], [12], [26]. 

Vowel duration in this study has more influence on 

overall vowel classification than has been found 

elsewhere, with a substantial improvement in vowel 

separation (up to 25%) while in [11] study was only 

up to 12%. F3 appears to have little influence on the 

classification accuracy of HA vowels, which is in 

agreement with other studies e.g. [11]. 

To sum up, our results are found to be more 

consistent with dynamic theories of vowels, as they 

provide evidence that monophthong vowels are 

dynamic and that vowel duration is the most useful 

additional feature to differentiate between phonemes. 

These results could be extended to look at contexts 

beyond hVd, as suggested by many researchers e.g. 
[11], [26], in order to dig deeper into dynamic 

properties in various consonantal contexts and 

provide further comparative research, which will be 

our next step. 
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