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ABSTRACT 
 
In this paper, we propose an automatic method of 
measuring the intelligibility of head and neck cancer 
patients’ speech. In a retrospective chart review, 
speech recordings of 137 individuals treated for oral 
and oropharyngeal cancer were included. Recordings 
before the treatment and at various times after the 
treatment were included. Naive listeners typed the 
utterances, and the proportion of correctly identified 
words was used as the measure for intelligibility. 
Three different neural networks were trained and 
compared to predict the speech intelligibility using 
Mel-frequency cepstral coefficients (MFCCs), Mel-
frequency filterbanks, and raw audio as input. These 
inputs were paired with different network 
architectures. The network using MFCCs as input and 
bidirectional long short-term memory (BLSTM) 
layers provided the best current performance. The 
model’s prediction was highly correlated with the 
actual intelligibility score, with a linear correlation 
coefficient of approximately 0.69. We conclude by 
discussing future directions and applications for this 
research. 
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1. INTRODUCTION 

For patients who have been treated for oral and 
oropharyngeal cancer, a major change occurs in the 
speech production system as a result of the treatment 
[9]. This change impacts the speech apparatus, and as 
a result, the speech intelligibility is impacted [9, 14]. 
Speech intelligibility is currently one of the metrics 
for assessing a patient’s ability to communicate 
effectively after treatment [9, 14, 18]. One current 
method of assessing speech intelligibility requires a 
volunteer to transcribe the patients’ speech and uses 
the accuracy of the transcription as the intelligibility 
score [19, 24]. In the present paper, we describe an 
automatic tool built to evaluate speakers’ 
intelligibility, which would provide a more time-

efficient, consistent, and objective evaluation [7, 11, 
12]. 

The present research has two main objectives. 
The first objective is to create a system based on 
human ratings that is time-efficient and comparable 
to human listeners. The second is to explore whether 
deep neural networks, trained on a limited dataset, are 
able to predict intelligibility scores with little to no 
information about the language (top-down 
information). In other words, can this system predict 
the intelligibility score from human raters using 
purely acoustic input and no higher level knowledge 
about the language [7, 11, 12]? 

2. METHODS 

In this section, we describe our data and three 
different neural networks, which vary in terms of 
input format and, as a result, architecture. These 
models were trained and tested to assess their ability 
to predict human intelligibility scores. 

2.1. Data 

To test our hypotheses, we collected data from 137 
head and neck cancer patients who had undergone 
speech assessment at the Institute for Reconstructive 
Sciences in Medicine as part of their treatment 
pathway. A waiver of consent was obtained, and the 
research procedure was approved by the Health 
Research Ethics Board of Alberta Cancer Committee 
(HREBA.CC-18-0400). A total of 335 recordings 
with intelligibility ratings were obtained from the 
hospital database using convenience sampling 
(availability of recordings). The sample included 189 
recordings of male patients and 146 recordings of 
female patients. Of all the recordings, 111 were 
obtained before treatment onset. Treatments included 
surgery, radiation, chemotherapy, and prosthetic 
treatment (e.g., a speech prosthesis that totally 
occludes an opening). 

During each of the recording sessions, 
participants read a list of 50 words and lists of 
sentences [19, 24]. Following the recordings, a group 
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of volunteers orthographically transcribed each of the 
recordings, resulting in a transcription of each 
recording by one person. From these transcriptions, 
an intelligibility score was calculated based on the 
accuracy of the transcription. Thus if a volunteer 
accurately transcribed 40 out of 50 words correctly 
the intelligibility score would be 80%. The word 
(sentence) intelligibility scores ranged from 12% 
(4%) to 100% (100%) with a median of 94 (99), mean 
of 86.3% (94.3%), and standard deviation of 17.9% 
(13.1%). Not all the patients were necessarily native 
English speakers, although the clinic operates in 
English. 

We processed 335 recordings, each containing 50 
words each. In total, we had 16,376 words resulting 
in approximately 2 hours of speech. We chose the 
word list recordings as they provided more variability 
in the intelligibility scores. Sentence scores had a 
larger bias in the higher accuracy range, likely 
because transcribers could use sentential context to 
reconstruct the sentence. Intelligibility scores were 
calculated based on the accuracy of human 
transcribers. Each transcriber was required to 
transcribe each word in the set of 50 and the 
intelligibility score was simply a calculation of the 
percent accuracy of the rater correctly recognizing the 
50 words. 

We identified and separated each word into 
individual sound files for the purpose of training and 
testing. The intelligibility score for the file containing 
each set of 50 words was assigned as the score to 
predict for each of the individual words. 

2.2. Models 

Three different models were created based on the type 
of input to be used in each model. The architecture of 
each model varied to accommodate and maximize the 
accuracy of the network for each type of input. 

The first model made use of MFCCs as the input 
and a BLSTM architecture. Twelve MFCCs plus the 
energy term calculated on 25 ms windows spaced at 
10 ms were used, plus delta and delta-delta 
coefficients, using the Python Speech Features library 
[13]. MFCCs are a classic choice for acoustic speech 
signal processing, and have been successfully paired 
with deep neural networks in tasks like automatic 
speech recognition and phoneme labeling [5]. 
MFCCs can be considered a summary of important 
components of the original signal, and the Mel 
filterbanks traditionally used in the calculation were 
designed with the intention of mirroring human 
hearing. 

BLSTM layers are like regular long short-term 
memory (LSTM) layers in that they learn temporal 
dependencies in the data, but the BLSTM layers learn 

to use both previous and future context, as opposed to 
just previous context like LSTM layers. They have 
been used successfully in a variety of tasks involving 
time-series data, like phoneme labeling [4, 5]. 

The second model uses 40-filter Mel filterbanks 
with the energy term calculated over 25 ms windows 
spaced at 10 ms, with delta and delta-delta features, 
using the Python Speech Features library [13]. Its 
architecture was a combination of convolutional and 
BLSTM layers. Previous research has shown that 
speech recognition systems pairing Mel filterbanks 
with convolutional layers can achieve high 
recognition accuracy [16, 26, 27]. 

The third model uses raw audio as the input, and 
a combination of convolutional and LSTM layers. 
The raw audio was sampled at 44.1 kHz, and the first 
convolutional layer windows the signal based on its 
filter size and stride length. There are indications that 
networks using raw audio can perform on par with 
those using engineered features like MFCCs [14] and 
Mel filterbanks [8, 20, 25]. Networks using raw audio 
have also found successful results in other tasks, like 
phoneme labeling for forced alignment [10], speech 
synthesis [23], and large vocabulary continuous 
speech recognition [22]. 

The overall architecture for combining 
convolutional layers with recurrent layers is 
suggested by Chollet [2], where the massive 
parallelizability of convolutional layers can allow 
networks to train faster than if they were composed 
completely of recurrent layers. In our models, we 
expect the convolutional layers to work like filter 
banks after training as suggested by Palaz et al. [15]. 
The BLSTM layers are expected to then model 
temporal patterns in the features detected by the 
convolutional layers. 

2.3. Training the networks 

Before the training process began, a hold-out 
validation set of 10% of the words were randomly 
selected. The networks were trained using 
minibatches of 400 words. The order of the words 
was shuffled at each epoch. The networks were 
trained to minimize the mean squared error between 
the output and the target intelligibility score. We 
made use of the Adam optimizer, with the amsgrad 
improvement [17], but default parameters otherwise. 
The training process for each model was stopped after 
4000 epochs. This number of epochs was selected as 
a compromise between computation-time and model 
performance. The training was carried out using 
Keras 2.2.2 [3] with TensorFlow 1.9.0 [1] as the 
backend using an NVIDIA Titan X Pascal GPU. 

The best configuration thus far for the network 
that used MFCCs as input consisted of 4 sequential 
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BLSTM layers with 128 units each, followed by 1 
BLSTM layer with 64 units, and ending with a fully-
connected layer with 1 unit with linear activation to 
perform the prediction. Each BLSTM layer otherwise 
had default values and ReLU activation. The number 
of layers and units in each layer were found through 
manual search, whereby the hyperparameters were 
adjusted incrementally between training sessions 
based on previous results. 

For the network that used the Mel filterbanks as 
input, the best configuration thus far has 1 two-
dimensional convolution layer with 128 3x3 filters 
and a stride length of 1, followed by 6 convolutional 
layers with 256 filters of size 2x3 with a stride length 
of 1, then 3 BLSTM layers with 128 units each, and 
finished by a fully-connected layer with 1 unit with 
linear activation to perform the prediction. Each 
convolutional layer was set to pad zeros to the input 
so that the dimensions were not reduced due to the 
filter size. Note that the filters are listed with the size 
in the temporal dimension first, and the size in the 
frequency dimension second. These parameters are 
influenced by the architectures in [27] and [26] and 
tweaked using manual search. Each layer otherwise 
had default values and ReLU activation. 

The best configuration thus far for the network 
that used raw audio as input consisted of the whole 
audio file as input, with a 1 one-dimensional 
convolutional layer with 128 filters of size 1000 and 
a stride length of 200 (producing 22.68 ms windows 
at 4.54 ms intervals for the convolutions). This was 
followed by a one-dimensional convolutional layer 
with 128 filters of size 5 and stride length of 1, then 5 
one-dimensional convolutional layers with 64 filters 
of size 5 and stride length of 1. Then there were 2 one-
dimensional convolutional layers with 64 filters of 
size 3 and stride length of 1, then 2 BLSTM layers 
with 128 units, followed by 1 BLSTM layer with 64 
units, and ending with a fully-connected layer with 1 
unit with linear activation to perform the regression 
prediction. Each layer otherwise had default values 
and ReLU activation. The number of layers and the 
parameters for each layer were found using manual 
search, as before. 

3. RESULTS 

We compared each model to the others by recording 
the training and validation loss. The MFCC model 
outperformed the other two models in both training 
loss and validation loss, showing the highest 
prediction accuracy. The training loss for the raw-
audio and the Mel filterbank models remained 
relatively unchanged even after 4000 epochs of 
training. For the raw-audio and fiterbank models, it 
seems that we have not yet found the optimal 

architecture for these models with the input provided. 
It is also possible that we have not provided them a 
sufficient amount of training data. 

For the remainder of this paper, we focus on the 
MFCC model after 4000 epochs of training. We 
performed a 10-fold cross-validation test of the 
MFCC model to further validate its effectiveness. 
During each fold, 10% of the data set was held out for 
testing, and the remaining 90% was used to train the 
model from scratch. During this process, the data 
were split by participant rather than randomly. There 
was no overlap between the folds. 

The results of the cross-validation tests are 
summarized in Figure 1. In the correlation plot, the 
predicted intelligibility scores are plotted on the y-
axis and the actual intelligibility scores are plotted on 
the x-axis. As is clear from the correlation (0.69), 
MFCC model provides a good fit for the data. We 
further see that there is a tendency for the model to 
predict higher scores than are found, as there are no 
predicted scores below 0.5 (most are above 0.6) while 
there are many actual intelligibility scores below this 
score. 
 

Figure 1: Correlation plot comparing predicted 
intelligibility scores to actual intelligibility scores . 
Each cross-validation fold is represented by a different 
color. 

 

 
 

We also investigated the prediction accuracy of 
the model by splitting the data between the recordings 
that occurred before treatment (pre) and the 
recordings from after treatment (post). The results of 
the investigation are illustrated in Figure 2. The post-
treatment recordings occurred at multiple time points 
after treatment, but for the purposes of this 
comparison, these time points have been 
consolidated. This consolidation is likely reflected in 
the fact that the correlation is lower for the pre-
treatment recordings. It is clear that most of the lower 
intelligibility predicted values (i.e., those below 0.75) 
are the post-treatment values. 
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Figure 2: Correlation plot comparing predicted 
intelligibility scores to actual intelligibility scores split 
across pre (blue) and post (red) treatment. 

 

 
 

Figures 1 and 2 illustrate the bias in the data for 
higher intelligibility scores. In other words, the 
training data is largely made up of scores above 0.75 
and the data below that score is much sparser. The 
confidence interval in the lower scores also illustrates 
this result. 

4. DISCUSSION 

The present report represents our first attempt at 
modeling speech intelligibility using deep neural 
networks. We are encouraged by the initial success 
we have seen in this preliminary work and believe 
that additional work will increase the accuracy. In 
order to get a model with a higher degree of 
generalization, more data is necessary. This data 
would include additional accuracy scores from more 
than one listener along with more data from other 
speakers. Deep neural nets often require large 
amounts of training data to achieve high accuracy and 
good generalization. We believe that the additional 
data will particularly help the model in predicting 
scores for new input from unknown patients. The 
addition of this new training data is necessary for the 
application of this type of technology clinical 
situations. Further, it would be useful to have more 
specific intelligibility scores for individual words as 
the score we are currently using requires that use the 
average score over 50 words from one speaker and 
assign that value to each of the 50 words.  

Another possible direction of exploration would 
be to investigate the intelligibility of the sentence data 
in addition to the word data. This has the potential to 
increase our training data substantially and provide 
training data that is more ecologically valid. We also 
hope to further modify the models’ hyperparameters 
and try different architectures, which may improve 
the overall accuracy of the models from the different 
types of input. 

The present work was based on head and neck 
cancer patients. The disease and its treatment often 
change the structures and articulatory control. It is 

possible that the network focused on characteristic 
acoustic changes related to changes in resonance that 
may predict intelligibility in this population. In 
addition to intelligibility, a future system could also 
be trained to predict variables related to social 
perception [18]. 

A final note, it would be informative to take the 
present set of results and use a DNN automatic speech 
recognition system on the patients’ recordings [21] 
and then derive a similar speech intelligibility score 
as we have used already. It would be interesting to 
investigate similarities and differences between 
human scores and scores derived from the automatic 
speech recognition system. This modeling approach 
may also have the added advantage of being slightly 
more transparent. 

5. CONCLUSIONS 

The present research found that it is possible to 
predict accurately human intelligibility scores using 
deep neural networks and that MFCC based input 
provided the best fit to the data. This also illustrates 
that it is feasible to create a computational system that 
can predict human intelligibility scores (or 
recognition accuracy) with the acoustic signal and a 
relatively small set of training data and that no 
additional information about language is necessary. 
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