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ABSTRACT

In the present work, we study the production of
five vowels of French. The idea is to compare
2-dimensional models with 3-dimensional models,
and examine whether the 2-dimensional articula-
tory models can adequately describe the acoustics
of the vocal tract. For the purposes of our experi-
ments, we used 3-dimensional MRI data to acquire
the shape of the vocal tract. We then use it to sim-
ulate how the pressure wave produced from the vo-
cal folds propagates with the K-wave Matlab toolkit.
We carried out acoustic simulations for both the
3-dimensional and the 2-dimensional (mid-sagittal
plane) shapes of the vocal tract and compared for-
mant frequencies with those calculated from the de-
noised speech signal recorded in the MRI machine.
We then compared the results of the 2-dimensional
and 3-dimensional acoustic simulation with those
provided by the traditional simulation used in ar-
ticulatory synthesis, which relies on the plane wave
propagation assumption.

Keywords: acoustic simulations, electrical simula-
tions, French vowels, MRI of the vocal tract

1. INTRODUCTION

Speech synthesis has reached a high level of nat-
uralness through concatenative approaches [2, 10]
and more recently deep learning approaches [28].
Both are based on the use of a large corpus of pre-
recorded speech.

The speech corpus has to cover all phenomena
that are to be treated. Hence, the more phonetic con-
texts, speech styles, expressions, speaker postures,
etc the corpus covers, the more natural the synthe-
sized speech. All this contributes to increasing the
size of the corpus.

On the other hand, the weakness of those tech-
niques is tightly connected to their dependence on
the corpus. This means that changing the speaker
characteristics, adding new expressions, or taking
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speech production disorders into account is almost
impossible. These techniques do not contribute to
the understanding of speech production and are un-
able to link an acoustic cue, for example the evolu-
tion of frequencies in the vicinity of a consonant, to
their articulatory origin.

Unlike these approaches, which only model the
result of speech production, i.e. the acoustic speech
signal, articulatory synthesis [3, 14, 27] explicitly
models the link between the vocal tract, vocal folds
and aero-acoustic phenomena. This is achieved by
solving the equations of aerodynamics and acous-
tics in the vocal tract and by using its geometry as
an input.

The geometry of the vocal tract results from the
position of the speech articulators, and thus from the
activity of corresponding muscles. A first solution
to model these phenomena is to use biomechanical
modeling to compute the shape of all the deformable
speech articulators [9,20]. This involves modeling
the behaviour of muscles and the properties of mus-
cle tissues in a realistic way before solving the me-
chanical equations. Despite constant progress, this
approach is often limited to predicting the position
of the jaw and the tongue shape and it is still unimag-
inable to use a biomechanical approach to calculate
the whole shape of the vocal tract.

For these reasons we prefer to use an articulatory
model [1,13] to compute the vocal tract geometry.
Of course, the articulatory model must provide a ge-
ometric description close to reality in order to guar-
antee a good quality of synthesis. Similarly to the
biomechanical approach, one of the challenges con-
sists of collecting and processing data to construct
the model. As the delineation of the articulators
in the MRI images is a task that requires a certain
amount of interpretation of the geometry of the vocal
tract and has a very long processing time, it is often
preferable to construct a two-dimensional model in
the mid-sagittal plane and then calculate the trans-
verse area at each point of the vocal tract from the
glottis to the lips [7].



There have been several studies of the vocal tract
using different types of articulatory data like Elec-
tromagnetic Articulography (EMA) and X-ray films
in order to synthesise speech or track the move-
ment of vocal tract parts [15], coupling electromag-
netic sensors and ultrasound. Another data acqui-
sition technique that has been widely used over the
last years is Magnetic Resonance Imaging (MRI).
In [23], they estimate the area function of the vocal
tract from MRI images and then compare the results
with the sound acquired at a different session. Even
though they tried to make the audio recording con-
dition as close to the original MRI as possible [11],
there could still be significant difference between
the recorded audio signal and the signal pronounced
during MRI acquisition due to the difference in the
auditory feedback for the speaker during the noisy
MRI recordings and otherwise.

In this work, our purpose is to examine to what ex-
tent the 2-dimensional data can describe articulatory
information, compared to 3-dimensional data, since
it is much more efficient to use with a 2-dimensional
model [7]. We also examine how the acoustics are
affected in each case by comparing the sound signal
with the results from 2 and 3-dimensional acoustic
and 2-dimensional electrical simulations.

The presented work can be divided into two main
parts: 1) the data acquisition and processing, and 2)
the simulations and the comparison of the results.

2. MATERIALS AND METHODS
2.1. Data acquisition

For the purpose of this study, we used an MRI data
part of a study approved by an ethics committee and
the subject gave written informed consent (Clinical-
Trials.gov identifier: NCT02887053). The subject
used for the data acquisition is a healthy male French
native speaker at the age of 32, without any reported
speaking or hearing problems.

The MRI data was acquired on a Siemens Prisma
3T scanner (Siemens, Erlangen, Germany) with a
gradient of 80mT /m amplitude and 200mT /m/ms
slew rate. We used the 3-dimensional cartesian vibe
sequence (TR =3.57T ms, TE = 1.43, FOV =22 x
20 mm, flip angle =9 degrees) for the acquisition.
The pixel bandwidth is 445Hz/ pixel with an image
resolution of 256 x 174. Scan slice thickness is 1.2
mm and the number of slices is 120. The pixel spac-
ing is 0.8597 and the acceleration factor is 3 iPAT.
The acquisition time was 7.4 s which allows the sub-
ject to maintain phonation easily.

The subject’s vocal tract was imaged while he
lay supine in the MRI scanner. The recording time
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for the subject, including calibration and pauses be-
tween phonemes, was 2 hours.

Audio was recorded at a sampling frequency of
16 kHz inside the MRI scanner using FOMRI III
(Optoacoustics, Or Yehuda, Israel) fiber optic mi-
crophone. The subject starts producing the phoneme
just before the MRI recording starts and sustains
phonation until the end of the acquisition. The sub-
ject wears ear plugs for protection from the scanner
noise, but is still able to communicate orally with the
experimenters via an in-scanner intercom system.

Since the sound is recorded at the same session
of the MRI acquisition, there is additional noise in
the audio signal. In order to de-noise it, we used the
de-noising algorithm proposed in [19].

We apply this algorithm to our data using the
FASST toolbox [21].

2.2. Segmentation

For the purposes of our experiments, we used the
ITK-SNAP software [30] to segment the volume of
the vocal tract. ITK-SNAP provides a great variety
of tools for segmenting images, both automatically
and manually.

As far as automatic segmentation is concerned,
ITK-SNAP implements two active contour segmen-
tation algorithms, region competition and geodesic
active contours [4], [31].

For manual segmentation, ITK-SNAP offers two
types of tools, the most interesting among them is
the adaptive brush that adjusts itself to follow the
image boundaries. The brush tool can be used for
both to 2D and 3D image segmentation.

2.3. Acoustic simulation

For the acoustic simulations, we employ the k-wave
Matlab toolbox [26]. This toolbox has a wide range
of applications like photoacoustic tomography ultra-
sound wave propagation [29], and acoustic propaga-
tion. [25].

Several numerical methods have been developed
to solve the partial differential equations of acous-
tics, like finite differences, finite elements, and
boundary element methods [24]. These methods
offer significant advantages as they can calculate
acoustic characteristics accurately and implement
frequency dependent losses at boundaries. However,
in many cases these methods are significantly slow.
This happens due to the fact that they require a small
time step to achieve adequate accuracy and a lot of
grid points per wave length. In the method used by
k-wave these problems are solved by interpolating a
Fourier series through all of the grid points in order



to get the estimation of the gradient. This approach
solves the problems of the previously referred meth-
ods as it a) requires fewer grid points (only two) per
wave length since the base function of the Fourier
series is the sinusoid and b) it can be fast since it
employs Fast Fourier Transform (FFT) to calculate
the amplitudes of the simulated signals. A problem
that arises is that when a wave approaches the com-
putational grid boundaries, it keeps propagating to
the medium by entering from the opposite site of
the computational grid. This happens because of
the usage of the FFT algorithm for the computa-
tion. To tackle this issue, k-wave adds a specific type
of layer to the boundaries of the computational grid
by implementing an absorbing boundary condition,
called Perfect Match Layer (PML), which prevents
this phenomenon.

Finally, k-wave toolbox has a great number of pa-
rameters that can be customised for a simulation,
most of them concerning the grid and time spar-
sity, the properties of the mediums, the sensors, the
sources, the number of dimensions (1D/2D/3D),
the number of PML, etc.

2.4. Electrical simulation

To perform the electrical simulation we used some
of the tools provided from the Xarticul software
[16], [22]. Xarticul offers multiple tools, like
an easy way to delineate and process articulator
contours, semi-automatic articulatory measurements
and construction of articulatory models [12]. Xar-
ticul can perform acoustic simulations from the area
function by using the algorithm proposed in [6].This
algorithm is based on the Transmission Line Circuit
Analog (TLCA) method [18]. The main idea of the
algorithm is to model every tube used to describe
the vocal tract as a circuit of electrical units whose
parameters (electrical) correspond to the physical
(acoustic). For example, the current and the voltage
of the circuit in the TLCA correspond to the volume
velocity and acoustic pressure respectively. There-
fore, instead of describing the vocal tract as a con-
tinuous connection of tubes, one can describe it as a
continuous connection of electric circuits. The main
advantage of this approach is that it allows to model
time-varying geometries of the vocal tract [6].

3. EXPERIMENTS

Our experiments can be divided into three main
stages: a) image segmentation, b) acoustic simula-
tions and c) electric simulations.
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3.1. Image segmentation

For the purposes of our experiments, we used five of
the vowels from the database described in the pre-
vious section, /a, e, i, 0, y/. First, we processed the
images with 3DSlicer [8] (http://www.slicer.org) to
apply lanczos interpolation in order to make correc-
tions to the image’s axis. Then, we used the tools
provided by the ITK-SNAP software to automati-
cally segment the 3D volume of the vocal tract and
manually corrected the result. The area of interest
begins at the glottis and extends to the lips at the
point where the lips stop being simultaneously vis-
ible at the coronal plane. We used two classes and
10000 points as nearest neighbours in order to as-
sign each point to the appropriate class for the cre-
ation of the probabilistic map, and 10 balls on aver-
age per vowel as "seeds" with various sizes based
on the region of the vocal tract where they were
placed. Then we applied the active contour algo-
rithm which required between 300 — 500 iterations
to cover the whole vocal tract. The amount of it-
erations is greatly based on the vowel and the ini-
tial number, size and position of the "seeds". For
the manual segmentation we used the adaptive brush
tool with the default parameters to acquire the vocal
tract mesh Figure 1. Finally we used meshlab [5] to
smooth every mesh by applying Laplacian smooth-
ing filter with step 3. For each vowel, about 4 hours
of processing was required, with the biggest amount
of time spent on the manual segmentation step.

3.2. Acoustic simulations

For the acoustic simulations, we used k-wave tool-
box for Matlab [26]. For every vowel examined,
simulations were carried out in both 2D and 3D.
First, the mesh was transformed into a volumetric
representation using voxels. Then we specified the
parameters for the 2D and 3D simulations. Since k-
wave uses FFT, the number of grid points was set so
as to have low prime factors, ideally a power of 2.
For the 3D, we used a grid size of 128 x 128 x 128
grid points (sagittal x coronal x axial) with d, =
dy = d; = Imm. We also used a PML layer of 10
grid points at the boundaries of every side of the
grid, to avoid the wave penetrating the opposite side,
as explained in the previous section. As a source
we used a ball which emits a delta pulse of pres-
sure, spreading equally in all directions. The source
has radius of 5 grid points, amplitude 1 Pa and was
placed at input of the vocal tract, which was spec-
ified manually for every vowel. To record the sim-
ulated pressure we used a sensor placed at the end
of the vocal tract. The medium properties inside the



vocal tract were ¢;, = 350m/s,d;, = 1kg/m> and the
properties outside, i.e. in the tissues that delimit the
vocal tract, were Cor = 1000m/s, dye = 1000kg /m?,
where c;,,, ¢,y are the speed, and d;;,, d,,,, are the den-
sities inside and outside the vocal tract respectively.
The time step is set according to the two medium
characteristics (here tissues and air) and the accepted
value is 3 % 107 8sec to guarantee a good stability.
The amount of time steps computed was 1000001.
The maximum allowed frequency of the grid was
175K H?z. For the 2D case, we run the simulations on
the y — z plane using a disc instead of a ball on the
mid-sagittal plane of the vocal tract. All the other
parameters remained the same between the two sim-
ulations. The amount of time required for the simu-
lation of each vowel is about 75 hours for 3D, while
for 2D is approximately 3 hours and 20 minutes. Fi-
nally, we calculated the transfer function of every
vocal tract and computed their peak frequencies (Ta-
ble 1), to compare them with the formants computed
with the electrical simulation.

3.3. Electric simulations

For the electric simulations we used the mid-sagittal
planes from the 3D MRI acquisition. We used Xar-
ticul to manually delineate the articulator contours
of each vowel. Afterwards, we used 40 tubes (Fig-
ure 1) to estimate the area function of the vocal tract
in order to compute its formants (Table 2). Finally,
we used selective LPC to compute the formants of
the original audio signal (Table 3). We also made
a comparison with the values given in the literature
for French [17] (Table 3).

Table 1: 2D / 3D formants computation from
acoustic simulations in Hertz

Table 2: 2D formants computation from electrical
simulations in Hertz

Fl | F2 F3
/a/ | 510 | 1200 | 2190
/el | 408 | 1276 | 2168
/il | 280 | 1684 | 2927
/o/ | 491 | 905 | 2185
fyl | 393 | 1911 | 2205

Table 3: Theoretical/measured values of French
vowels formants in Hertz

F1 F2 F3
fal | 6747694 | 1349/1231 | 3169 /2545
/el | 4167460 | 1444 /1444 | 2499 / 2544
Al | 3377304 | 2394 /2207 | 3136 /3237
/ol | 404 /440 | 900/ 787 2728 /2605
lyl | 281/285 | 1798 /1802 | 2192 /2198

Figure 1: 3D volume of /i/ (left), separation of the

vocal tract into acoustic tubes for /o/ (right)

F1 F2 F3
/al | 684 /689 | 1256/1256 | 2503 /2604
lee/ | 5171/443 | 1391/ 1335 | 2379/2436
/il | 308 /380 | 2064 /2306 | 2976 /3193
/ol | 3837430 | 793 /732 2283/2619
/yl | 300/336 | 1750/ 1854 | 2120 /2228

4. DISCUSSION

The first remark concerns the sounds produced by
the speaker in the MRI machine. As shown in Ta-
ble 3 which gives the average values for French
speakers, the measured values are a little far from
the expected values. This is especially true for the
first formant of close vowels /i,o/ which is higher
in frequency. This would mean that the pharyngeal
cavity is smaller due to the subject posture. The
visual examination of the images shows a slightly
shifted articulation in some cases. Second there is a
good agreement between the results of 2D/3D simu-
lations and the formants F1 and F2 determined from
the speech signal recorded. However, for F3 the 3D
simulation turns out to give results closer to those
of natural speech than those of the 2D simulation,
probably because the 3D volume gives a geometry
closer to the real one.

The third remark concerns the comparison be-
tween the acoustic and electrical simulations. It
turns out that the electric simulation is not as good
as the acoustic simulation to reproduce the formants.
Since there is a good agreement between the 2D and
3D acoustic simulation, the most probable hypothe-
sis is that either splitting of the vocal tract into small
tubes or the estimation of the area function from the
mid-sagittal shape is not completely satisfactory.

Future direction for research will focus these
points so as to improve the quality of articulatory
synthesis.
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