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ABSTRACT 

The present study tested the idea that coarticulation, 
despite involving overlap of articulatory gestures, is 
achieved by sequential target approximation at the 
level of individual articulator dimensions. For 
example, CV co-onset in a velar stop can be achieved 
by having the tongue body vertically move upward 
for a closure contact, while at the same time also 
moving horizontally to achieve the tongue shape for 
the vowel, resulting in velar contact locations that 
vary gradiently with adjacent vowels. We examined 
this hypothesis in an analysis-by-articulatory-
synthesis paradigm, whereby vocal tract parameters 
were optimized to minimize acoustic differences 
between synthetic and natural speech. Results of a 
perceptual identification experiment demonstrated 
that syllables synthesized with articulatory 
parameters learned this way had fairly high 
intelligibility. Potential impacts of the findings on 
understanding coarticulation, coarticulation 
resistance and vocal learning as well as on 
articulatory synthesis are discussed. 

Keywords: coarticulation, articulatory synthesis, 
target approximation, vocal learning 

1. INTRODUCTION

The term ‘coarticulation’ (‘Koartikulation’) was first 
proposed by Menzerath and de Lacerda [17] to 
describe the phenomenon that the movement of the 
vowel in a consonant-to-vowel (CV) sequence starts 
at the same time as the consonant [15]. By now, 
however, it is mostly used to refer to any variation of 
a segment with adjacent or nearby segments. The 
contextual variability of segments has intrigued 
theoretical discussions on how linguistically invariant 
segments take various articulatory-acoustic 
manifestations in connected speech. In the task 
dynamic model [10-11, 26] as well as Articulatory 
Phonology [7], it is assumed that there are temporal 
overlaps between linguistically relevant movements 
of the vocal tract, referred to as gestures. In the 
window model of coarticulation, a segmental feature 
has a ‘window’ consisting of a maximum and a 
minimum physical value that reflects contextual 

sensitivity [14]. Bladon & Al-Bamerni [3] has 
hypothesized that there is a specific “coarticulation 
resistance” value associated with each segment. Later 
on, quantitative measurements of coarticulation 
resistance have been developed based on advances in 
articulatory imaging techniques, such as the degree of 
articulatory constraints (DAC) model [24-25], the 
statistical model [13] and the mutual information 
(MI) model [12]. These measurements represent to
what extent a specific articulator is involved with the
presence of distinct surrounding segments. The early
philosophical models and the latest measurements
tend to focus on the articulatory movement.
Difficulties arise, however, when it is implemented in
articulatory synthesis, which requires high perceptual
accuracy.

Lindbolm [16] applied linear regressions to 
capture the changes in vowel formant frequencies 
soon after the consonant release, known as locus 
equations. As an extension, Öhman [19] proposed a 
mathematical function that treated the consonant 
gesture as a diphthongal force that superposes the 
movements of vowels. His work inspired a growing 
body of literature that adopted different approaches to 
calculating vocal tract area functions for the 
modelling of coarticulation in speech synthesis [1, 8, 
27]. Birkholz [1] modelled the vocal tract shapes of 
context-sensitive consonants based on weighted 
means of reference shapes of consonants following 
point vowels (i.e., /a/, /i/ and /u/) via acoustic 
optimization. This synthesis system relies on 
articulatory data to pre-define the vocal tract shapes, 
which is unsatisfactory if articulatory synthesis were 
to be envisaged as a simulation of vocal learning, as 
learners would not normally have access to 
knowledge of articulation.  

The aim of the current study is to explore how 
coarticulation can be learned through acoustic 
imitation by simulating it in articulatory synthesis 
using VocalTractLab [2]. We tested the hypothesis 
that a) C and V articulation are fully synchronized at 
syllable onset, and b) despite the CV overlap, at the 
level of individual articulator dimensions, target 
approximation is sequential [28]. The hypothesis 
differs from the task dynamic model [10-11, 26] in 
that a) CV synchrony is presumed rather than learned, 
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and b) there is no blending at the level of articulatory 
dimension. For example, in /gV/, the tongue body 
vertically moves upward for a velar contact, while 
also moving horizontally for the vowel tongue shape, 
resulting in a velar contact location depending on the 
vowel context. The articulatory synthesis paradigm 
has been successfully tested in generating Thai 
vowels but not CV sequences where the C is an 
obstruent consonant [20-21]. The presented study is 
to test the effectiveness of adding dimension-specific 
sequential target approximation to the paradigm. The 
performance of the model will be evaluated in terms 
of perceptual quality of the synthetic sounds via an 
identification task and in terms of plausibility of the 
learned articulatory parameters.  

2. METHOD 

Fig. 1 is an illustration of the learning model. The 
articulatory targets being learned are parameters 
of VocalTractLab (Fig. 1A). The dynamics of the 
articulators are controlled by dimension-specific 
sequential target approximation (Fig. 1B). The 
simulated vocal tract parameter curves are then 
used to calculate area functions for acoustic 
simulation (Fig. 1C). Mel frequency cepstral 
coefficients (MFCCs) are extracted from both the 
target and synthetic sounds and compared (Fig. 
1D). The articulatory parameters are optimized 
iteratively from A to D to minimize the sum of 
squared errors of MFCCs (i.e., the cepstral 
distance) between the target and synthetic sounds. 
 
Figure 1: Overview of the learning model. 
 

 

2.1. Vocal tract model 

VocalTractLab 2.2 (www.vocaltractlab.de) [2] 
calculates area functions for acoustic simulation on 
the basis of a geometrical 3D vocal tract model, 
adapted from MRI data of a German male speaker. 
The simulation involved twenty vocal tract 
parameters, as shown in Table 1. During speech 
production, the physiological structure of the vocal 
tract restricts the articulatory movement. Here, the 
inter-articulator constraints were simulated by 
regulating adjacent articulators together. For 
example, whenever the tongue blade parameters are 
adjusted, the tongue body parameters move in the 
same direction by 20%.  
 

Table 1: Vocal tract parameters of the model 
 

Parameter Description 
HX, HY Horiz. and vert. hyoid positions 
JX, JA Jaw position and Jaw angle 
LP, LD Lip protrusion and vert. lip distance 
VS, VO Velum shape and velum opening 
TCX, TCY Horiz. and vert. tongue body center 

positions 
TTX, TTY Horiz. and vert. tongue tip positions 
TBX, TBY Horiz. and vert. tongue blade 

positions 
TRX, TRY Horiz. and vert. tongue root positions 
TS1 – TS4 Tongue side elevation from the 

anterior to the posterior part of the 
tongue 

 

2.2. Simulation 

We ran a series of simulations for learning English 
monosyllabic CVC words containing bilabial, 
alveolar and velar stops (Table 2), with the goal that 
the synthetic words would be correctly identified by 
naïve listeners without phonetic knowledge. For the 
target words to be learned, recordings were made by 
a female American English speaker in a quiet room. 

In the simulation, what was being learned were 
articulatory targets of consonants and vowels. In each 
learning cycle, a full set of hypothetical targets with 
pre-specified fixed time intervals were tested. Each 
articulatory dimension was controlled either by the 
consonant or by the vowel. As shown in Fig. 1B for 
/gV/, at t0 the vertical tongue body parameter was 
allowed to move towards the consonant target and the 
other articulator dimensions moved towards the 
vowel target. The vertical tongue body parameter was 
allowed to move towards vowel target from t1, which 
ended at t2. Similarly, for /b/, the lip distance was 
controlled by the consonant before t1, and for /d/, the 
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vertical tongue tip and tongue blade positions were 
controlled by the consonant until t1.  

 
Table 2: Target words 
 

Vowel /bv/ /dV/ /gV/ 
/i/ bead deed  
/ɪ/ bid did  
/ɛ/ bed dead get 
/æ/ bad   
/ɒ/ bod  god 
/u/ booed  good 
/ʌ/ bud   

2.3. Optimization 

The optimization was based on an analysis-by-
synthesis paradigm to simulate learners’ vocal 
exploration. We adopted a pure random search 
algorithm [6] in which the vocal tract configurations 
were randomly adjusted until a best acoustic match 
with the target utterance was obtained. MFCC was 
used as auditory feedback, which is a robust 
parametric representation widely used in speech 
recognition and speech synthesis [9]. For each target 
CV sequence, the model was trained for 3-30k 
iterations, depending on the learning difficulties. 
After CV sequences were trained, codas were 
optimized in the same way. The intonation contours 
were synthesized based on f0 targets learned from the 
target words using PENTAtrainer2 [22-23]. 

2.4. Identification experiment 

Ten native English speakers (female: 6) participated 
in the perception experiment. The stimuli were 
thirteen recorded target sounds and the corresponding 
synthetic sounds. The stimuli were randomised and 
presented by the ExperimentMFC function of Praat 
[4]. The perceptual task was a free identification task 
in which listeners wrote down what they heard and 
judged the naturalness of the stimuli on a 1-5 Likert 
scale with 5 being the most natural and 1 being the 
most unnatural. 

3. RESULTS 

3.1. Identification results 

The recognition rate was calculated in terms of how 
many segments were correctly identified. The mean 
recognition rate of the CV sequences was 97% for the 
natural syllables and 74% for the synthetic ones. Fig. 
2 shows the recognition rates of the synthetic 
syllables. The average naturalness rating of the 
natural and synthetic sounds was 4.74 and 1.91 
respectively. An ordered logistic regression showed 

that the naturalness rating of the synthetic speech 
significantly predicted whether the whole word was 
correctly perceived (β = 0.808, SE = 0.355, t = 2.275). 
Sample natural and synthetic sounds are embedded at 
the end of the PDF. 
 

Figure 2: Recognition rate of the learned syllables 

 

3.2. Learned vocal tract parameters 

Fig. 3 displays the optimized vocal tract shapes of the 
velar stops at the moment of maximal constriction. 
With regard to the horizontal tongue body position 
(TCX), the more positive the number, the more 
forward the tongue position. The learned tongue body 
targets of velar stops are similar in the vertical 
position (TCY) but different in the horizontal position 
(TCX). The tongue body therefore moved upward to 
contact the soft palate and also horizontally towards 
the vowel. As the vowel in /get/ is more anterior than 
in /god/, the place of the closure of /g/ is more anterior 
in /get/, too.  
 

Figure 3: Learned vocal tract shapes right before 
the release of the initial consonants in /gV/ 
sequences. TCX and TCY represent the horizontal 
and vertical tongue body positions respectively. 

 
A. /god/                              B. /get/    

   
 
Fig. 4 and Fig. 5 illustrate the learned vocal tract 
shapes right before the release of the bilabial stops 
and alveolar stops. The negative lip distance indicates 
a closed lip target and the negative TTY values 
indicate that the consonant target forms a constriction 
at the alveolar ridge. In Fig. 4, although the lips are 
both closed before the release, the tongue shapes are 
ready for the vowel. Likewise, in CV sequences 
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containing alveolar stops (Fig. 5), the anterior part of 
the tongue is in a similar shape at the moment of the 
oral contact, the posterior part of the tongue is in a 
shape similar to the adjacent vowel. 
 

Figure 4: Learned vocal tract shapes right before 
the release of the initial consonants in /bV/ 
sequences. LD represents the lip distance. 

 
A. /bod/                             B. /booed/ 

   
 

Figure 5: Learned vocal tract shapes right before 
the release of the initial consonants in /dV/ 
sequences. TTY and TBY represent the vertical 
tongue tip positions and the tongue blade positions 
respectively. 

 
A. /deed/                             B. /did/ 

     

4. DISCUSSION 

It has been well-established that different speech 
segments affect the articulatory movement of the 
surrounding segments to a varying degree, known as 
‘coarticulation resistance’ [3, 12-13, 24-25]. The 
contextual variations have been interpreted as 
originating from variable temporally overlapping 
gestures between the consonant and vowel in the task 
dynamic model and Articulatory Phonology, which 
may sometimes involve gestural blending [7, 10-11, 
19, 26]. In the present study we tested the alternative 
hypothesis that even when the C and V gestures are 
overlapped in time, the articulatory execution in the 
form of target approximation can be serially ordered 
for specific articulatory dimensions [28]. In /dV/ and 
/gV/ sequences, the part of the tongue crucial for a 
consonant moves upwards to make a contact, while 
the rest of the tongue moves backwards or forwards 
for the co-produced vowel. In /bV/ sequences, the lip 
distance is controlled by the consonant, while the 

entire tongue moves towards the position for the co-
produced vowel. Such simulated CV co-onset 
therefore sheds light on the inner workings behind the 
observed co-onset of vowel and consonant 
movements at the beginning of the syllable upon 
which the term ‘koartikulation’ was coined [17].  

The study also shows that although they have 
heavily burdened concatenative speech synthesis, 
contextual variations of phonetic segments can be 
simulated without excessive amounts of training data. 
Furthermore, unlike previous articulatory synthesis 
that relies on articulatory data [1], the present study 
has tackled the acoustic-to-articulation mapping by 
implementing analysis-by-articulatory-synthesis with 
the hypothetical mechanisms of synchronized CV co-
onset and dimension-specific target approximation. 
The proposed methods may eventually lead to high-
quality articulatory speech synthesis. Importantly, the 
methods also showed the ability to address the 
speaker normalization problem in language 
acquisition [5, 18], because the target sounds were 
spoken by a female while the vocal tract model used 
in the learning was that of a male.  Guided by auditory 
feedback, the model was able to automatically learn 
to produce intelligible CV sequences despite the 
anatomical differences. This demonstrates that the 
learner can discover a motor representation 
equivalent to the sensory input by repeatedly 
adjusting vocal tract configurations to match the 
perceived sounds. The simulation provides a possible 
solution for the problem of how speech production 
and perception can be linked by acoustic imitation. 
Further research, however, will be undertaken to 
simulate children’s vocal learning and how the 
critical articulator dimensions for consonant targets 
are discovered by learners rather than being pre-set as 
was done in the present study. 

Another limitation of the current study is that the 
pure random search used was time-consuming. The 
intention was to test the power of the synchronization 
mechanism and the intrinsic articulatory constraints 
rather than to find the best machine learning 
algorithms. Work is currently in progress to apply 
genetic algorithms and neural networks to speed up 
the optimization process.  

Overall, the findings of the study provide support 
for the hypothesis that CV coarticulation is realized 
by co-onset of sequential target approximation at the 
level of individual articulator dimensions. The model 
succeeded in simulating the learning of contextual 
articulatory variances and achieved fairly high 
intelligibility. The findings therefore offer new 
insight on the basic mechanisms of coarticulation and 
vocal learning, and may have implications for high-
quality articulatory synthesis. 
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6. AUDIO EXAMPLES 

 
 
 

Target /bad/

Learned /bad/

Target /did/

Learned /did/

Target /good/

Learned /good/
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null

0.6269387


null

0.6269387


null

0.57469386


null

0.57469386


null

0.6269387


null

0.6269387
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