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ABSTRACT

We report the results of an analysis of the audi-
tory lexical decision latencies in the Massive Au-
ditory Lexical Decision database (MALD) [9] us-
ing a statistical technique for time-to-event analy-
sis: the piece-wise exponential additive mixed mod-
els (PAMM) [2, 1, 3]. The PAMM models the proba-
bility of an instantaneous response at each point in
time, rather than the response times themselves. The
analysis revealed an increased instantaneous prob-
ability of a response for high frequency words, as
well as for words from sparse phonological neigh-
borhoods. These effects were most prominent dur-
ing the early stages of the decision making process,
but remained significant throughout large parts of
the response window. Furthermore, we observed a
more transient early effect of the temporal distance
to the uniqueness point. The PAMM analysis of the
MALD data thus provides more insight into the tem-
poral dynamics of lexical processing in the auditory
lexical decision task.

Keywords: auditory lexical decision, time-to-event
analysis, piece-wise exponential additive mixed
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1. INTRODUCTION

Analyses of experimental data in phonetic psy-
cholinguistics typically focus on the mean of the
response variable distribution. A least squares re-
gression of the response times in an auditory lexi-
cal decision experiment, for instance, estimates the
conditional mean of the response time distribution
given one or more lexical predictors, such as the
length or frequency of a word. Effects of lexical
predictors, however, need not be constant over the
response time distribution. The effects of some pre-
dictors may primarily influence short reaction times,
whereas the effects of other predictors may be more
prominent for long reaction times. Furthermore, due
to the temporal nature of the speech signal, the val-
ues of lexical or acoustic predictors themselves may

vary as a function of time.
Further insight into the temporal dynamics of pre-

dictor effects in behavioral experiments helps fur-
ther our understanding of the language processing
system. Distributional analyses help provide such
insight. Here, we present a distributional analysis
of auditory lexical decision data using a statistical
model that is based on the principles of time-to-
event analysis: the piece-wise exponential additive
mixed model (PAMM) [2, 1, 3]. The PAMM allows
for an investigation of non-linear effects of both
time-constant and time-varying predictors as they
develop over time. Here, we use a PAMM to gain
further insight into the temporal development of the
effects of word frequency, phonological neighbor-
hood density, and the phonological uniqueness point
on the behavioral responses in the Massive Auditory
Lexical Decision (MALD) database [9].

2. METHODS

From the Massive Auditory Lexical Decision
database (MALD [9]) we extracted average lexical
decision latencies for all words with at least one
correct response. This resulted in a set of 26,520
words. We analyze the average lexical decision la-
tencies for these words using a PAMM. Rather than
the response times themselves, the PAMM models
the instantaneous probability of a response through-
out the response window. One advantage of this ap-
proach is that predictors need not be constant over
the response time distribution. Here, we investi-
gate the effects of two time-varying predictors: time
since offset and time since UP. Furthermore, we en-
tered two time-constant predictors into the PAMM
analysis: frequency and the phonological neighbor-
hood density measure PLD. We describe these time-
constant and time-varying predictors in more detail
below.

The MALD database provides the sound file and
phoneme level segmentation for each pronunciation.
On the basis of these data, we calculated the acoustic
duration and the acoustic uniqueness point (hence-
forth UP) for each of the words under investigation.
The acoustic duration is the time from stimulus on-
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set to the temporal offset of the final phoneme of
a word in the acoustic signal. Similarly, we de-
fined the acoustic UP as the temporal endpoint of
the phoneme that distinguishes a word from all other
words, including the members of a word’s morpho-
logical family.

As noted above, PAMMs offer the opportunity to
include time-varying predictors into the analysis.
Consequently, we did not enter the acoustic duration
and acoustic UP into the analyses directly. Instead,
we defined the corresponding predictors time since
offset and time since UP as the temporal distance
between the current point in time on the one hand
and the the offset of the acoustic signal and the UP
on the other hand. At time t = 400 ms, for instance,
the values of time since offset and time since UP for
a word with an acoustic duration of 500 ms and a UP
of 350 ms are −100 ms and 50 ms, respectively.

We furthermore investigated the effects of two
time-constant predictors: frequency and PLD. We
defined frequency as the frequency of the ortho-
graphic word form in the SUBTLEX-US corpus [4].
As shown by Tucker et al. [9], the explana-
tory power of the orthographic frequencies from
SUBTLEX-US for the auditory lexical decision data
in the MALD database is highly competitive as com-
pared to phonological frequencies from corpora of
spoken speech, such as the spoken language subset
of the Corpus of Contemporary American English
(COCA [5]). The SUBTLEX-US frequency counts
were log-transformed prior to analysis to remove a
rightward skew from the frequency distribution.

PLD is a measure of phonological neighborhood
density that is based on the phonological Leven-
shtein distance between words. The phonological
Levenshtein distance between two words is the to-
tal number of deletions, additions, or substitutions
that are necessary to convert the phonological form
of one word into the phonological form of another
word [7]. Technically, the PLD measure used here
is defined as the average phone-level Levenshtein
distance between a word and all other words in an
adapted version of the CMU Pronouncing Dictio-
nary [10, 9]. Prior to analysis, we applied an inverse
transformation ( f (x) = −1

x ) to the phonological Lev-
enshtein distances to increase the symmetry of the
PLD distribution.

3. ANALYSIS

As noted above, we analyzed the auditory lexi-
cal decision latencies in the MALD database with
a statistical technique from time-to-event analy-
sis: the PAMM. [2, 1, 3]. The PAMM is framed

within the context of the generalized additive mixed-
effect model (GAMM) [11, 12]) and makes it pos-
sible to uncover non-linear predictor effects that
vary in a non-linear fashion as a function of time.
Furthermore, the values of predictors themselves
need not be constant over time. Recently, Hendrix
[6] adopted PAMMs to investigate non-linear time-
varying predictor effects in the visual lexical deci-
sion task.

Rather than the response time itself, the response
variable in a PAMM is the (log of the) instantaneous
hazard rate: the probability that an event of interest
occurs at time t, provided that it did not occur prior
to time t. The event of interest in the current study is
the “word or non-word” decision in the auditory lex-
ical decision task. Conceptually, the PAMM is an ex-
tension of the piece-wise exponential model (PEM)
in the sense that the (log of the) instantaneous haz-
ard rate is estimated in a piece-wise fashion for each
of a number of time intervals in the response win-
dow (i.e., the time window in which lexical deci-
sions come in). Technically, for all time points in the
interval j := (κ j−1,κ j], the (log of the) hazard func-
tion λ (t|xi) given the predictor values xi for stimulus
i is defined as:

(1) log(λ (t|xi)) = logλ0(t j)+
p

∑
k=1

fk(xi,k, t j)

where λ0(t j) is the baseline hazard for time interval
j, and fk(xi,k, t j) are smooth functions for predictors
k ∈ 1, . . . , p ∀ t ∈ j. Note that random effect struc-
tures may be specified in a PAMM as well. No ran-
dom effects were included in the current analysis,
however. We therefore omitted the specification of
random effect structures from Equation 1.

The baseline hazard is the (log of the) over-
all probability of a response as it evolves over
time and is modelled through the model intercept
and a smooth over time (i.e., through a s(time)
term). Predictor effects are adjustments to this base-
line hazard. Here, we estimate time-constant ef-
fects of predictors through predictor smooths (i.e.,
s(predictor) terms), whereas we allowed for
time-varying predictor effects by including ten-
sor product interactions between time and predic-
tor (i.e., ti(time,predictor) terms; see Wood
(2017) [13] for more details). Predictor smooths
as well as time by predictor interactions were lim-
ited to fourth order non-linearities to ensure inter-
pretability of the results. Although it is possible to
model three-way interactions between time and two
predictors in a PAMM, we refrained from including
such interactions in the analysis for easy of interpre-
tation. For each predictor, predictor outliers further
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than 3 standard deviations from the predictor mean
were removed prior to analysis.

4. RESULTS

The results of the PAMM analysis of the auditory lex-
ical decision latencies in the MALD database are pre-
sented in Table 1. As can be seen in Table 1, both
the model intercept (β = -4.678, p < 0.001) and the
smooth of time (χ2 = 1852.250, p < 0.001) were sig-
nificantly different from zero. The resulting (log)
baseline hazard is presented in the left panel of Fig-
ure 1. The probability of an instantaneous response
is initially low and increases as a function of time,
most prominently so between the start of the anal-
ysis window (640 ms after stimulus onset) and 800
ms after stimulus onset. As noted by Hendrix [6],
this functional shape of the baseline hazard function
is typical for response time distributions.

We observed a significant main effect of time
since offset (χ2 = 17.240, p < 0.001) as well. The ef-
fect of time since offset, however, strongly interacts
with time (χ2 = 1016.438, p < 0.001). The effect of
time since offset is visualized in the right panel of
Figure 1. Time is on the x-axis, whereas time since
offset is on the y-axis. The z-axis represents the ad-
justment to the (log) baseline hazard as a function of
time and time since offset, with warmer colors repre-
senting a higher probability of an instantaneous re-
sponse.

The contour plot for time since offset includes the
partial main effect of time since offset and the par-
tial time by time since offset interaction, but excludes
the partial main effect of time. The partial main ef-
fect of time is excluded for ease of interpretation and
is omitted in all subsequent time by predictor con-
tour plots as well. As expected, the probability of an
instantaneous response is lower when the offset of
the acoustic signal has not yet been reached (i.e., for
negative values of time since offset).

We furthermore observed a significant main effect

Table 1: Results for a PAMM fit to the auditory
lexical decision latencies in the MALD database
[9]. Provided are β coefficients and p-values for
parametric terms, as well as χ2-values and p-
values for smooth terms.

parametric terms βββ ppp-value
intercept -4.678 <0.001
smooth terms χχχ222-value ppp-value
time 1852.250 <0.001
time since offset 17.240 <0.001
time by time since offset 1016.438 <0.001
frequency 445.388 <0.001
time by frequency 94.399 <0.001
PLD 78.292 <0.001
time by PLD 31.985 <0.001
time since UP 12.963 <0.001
time by time since UP 71.322 <0.001

of frequency (χ2 = 445.388, p < 0.001) and a signif-
icant time by frequency interaction (χ2 = 94.399, p
< 0.001). The effect of frequency is presented in the
left panel of Figure 2. The probability of an instan-
taneous response is higher for high frequency words
as compared to low frequency words. The effect of
frequency is most prominent during the early stages
of the decision making process, but remains signifi-
cant throughout a large part of the response window.
Indeed, the effect of frequency last reaches signif-
icance at 1,344 ms after stimulus onset, at which
point in time no less than 96.44% of the words have
been responded to. Word frequency thus continues
to influence the decision making process during later
stages of the response window.

In addition to the effect of frequency, the PAMM
analysis revealed significant main effect (χ2 =
78.292, p < 0.001), as well as a significant inter-
action with time (χ2 = 31.985, p < 0.001) for (inv)
PLD. The effect of PLD is presented in the middle
panel of Figure 2. Consistent with the longer lexical
decision latencies for words from dense phonolog-
ical neighborhoods reported in earlier studies (see

Figure 1: Left panel: (log) baseline hazard. Right panel: effect of time since offset.
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Figure 2: Effects of frequency (left panel), PLD (middle panel), and time since offset (right panel).
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e.g., [8]), the probability of an instantaneous re-
sponse is lower for words from dense phonological
neighborhoods (i.e., for low values of PLD). As was
the case for the effect of frequency, the effect of PLD
is most prominent during the earlier stages of the de-
cision making process, but remains significant until
92.84% of the words have been responded to (i.e.,
until 1,236 ms after stimulus onset).

Finally, both the main effect (χ2 = 17.240, p <
0.001) and the interaction with time (χ2 = 1016.438,
p < 0.001) were significant for time since UP. The
instantaneous probability of a response is higher
when the acoustic uniqueness point is more recent
(i.e., for smaller positive values of time since UP).
Participants are thus more likely to respond when the
acoustic signal of a word was recently distinguished
from the acoustic signal for all other words. In com-
parison with the effects of frequency and PLD, the
effect of time since UP is more transient in nature
with large effect sizes at the start of the response
window and much smaller effect sizes during later
stages of the decision making process.

5. DISCUSSION

We reported the results of a time-to-event analysis of
the auditory lexical decision latencies in the MALD
database [9] using a PAMM [2, 1, 3]). We observed a
time-varying effect of the temporal distance to the
uniqueness point (i.e., the point in time at which
a word can be distinguished from all other words).
As expected, the probability of an instantaneous re-
sponse was higher when the uniqueness point was
more recent. This effect, however, was much more
prominent during the earlier stages of the response
window than at later points in time. During the ear-
lier stages of the response window, responses come
in for words that are easily identified as real words.
The current results indicate that responses to such
words tend to come in soon after or even before the
point in time at which a word can be distinguished

from all other words.
For words that cannot be identified as easily the

temporal location of the uniqueness point is less rel-
evant. Instead, listeners resort to more static sources
of information, such as the frequency or phonologi-
cal neighborhood density of a word. Consistent with
previous findings, the probability of an instanta-
neous response was higher for high frequency words
and for words from sparse phonological neighbor-
hoods. Although the effects frequency and phono-
logical neighborhood density were most prominent
during the early stages of the response window, how-
ever, both predictors continued to show robust and
qualitatively consistent effects throughout the re-
sponse window. The information provided by these
lexical-distributional measures thus remains relevant
for the decision making process throughout the anal-
ysis window.

As a first exploration of PAMMs in the context of
speech perception, the work reported here focuses
on the effects of a limited number of lexical predic-
tors on the probability of an instantaneous response
in the auditory lexical decision task. For these pre-
dictors, however, the current analysis helped gain
further insight the temporal development of the non-
linear effects of the predictors on lexical process-
ing in the auditory domain. The (relative) timing
of predictor effects is crucial for the development of
psycholinguistic theories and models of speech per-
ception. The results reported here thus suggest that
PAMMs have the potential to uncover valuable infor-
mation that is not available through more traditional
analysis techniques.
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