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ABSTRACT 

 

A common indicator of speech production 

disorders in children is a reduced ability to 

articulate complex syllables. Clinical studies of 

syllabic complexity of child speech have 

traditionally relied on phonetic transcription by 

trained listeners to characterize deviations in 

phonotatic structure. The labor-intensive nature 

of transcribing, segmenting, labeling, and hand-

counting syllables has limited clinical analysis 

of large samples o f  continuous speech. In this 

paper, we discuss the use of a computer-assisted 

method, Automatic Syllabic Cluster Analysis, 

for broad transcription, segmentation, and 

counting syllabic units as a means for fast 

analysis of differences in speech precision when 

comparing children with and without speech-

related disorders.   Findings show that the 

number of syllabic clusters per utterance is 

a significant indicator of speech disorder. 
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analysis, syllables, chi ld speech 

  

1. INTRODUCTION 

 
In the course of development, children become 

more and more facile at voluntary coordination 

of the motoric movements necessary for 

utterance of complex syllables [14,15,35]. The 

mastery of complex syllables has been shown to 

be a powerful predictor of later communication 

skills [10,23,25]. Children with delayed speech 

acquisition do not show this same developmental 

trend and deviations in syllable acquisition may 

serve as diagnostic marker of future speech 

delay [7,8,20] 

 

Historically researchers have been challenged to 

find ways to quantify maturation of speech 

production in young children, particularly in 

continuous speech [18,30]. Conventional 

approaches have typically involved careful 

transcription of child speech by researchers 

with specialized training. The time and labor 

intensive nature of such studies has necessarily 

limited the number and comprehensiveness of 

research  studies  [9,24].  This  is a particular 

problem in studies of children with speech 

disorders that affect intelligibility [9].  

Further, the acknowledged best way to 

characterize child speech is from longer, 

spontaneous productions, but the need for 

transcription and analysis of this large  volume  

of  data typically limits standardized testing to 

shorter, more controlled utterances [20,25]. To 

address this limitation, researchers have turned 

to automatized methods to quantify patterns in 

child vocalizations [6,17,24,33,35,36].  

 

Automated approaches using acoustic features 

have been used in a number of studies [1-5, 

24, 32, 35]. Another common approach is to 

employ ASR (automatic speech recognition) as 

an alternative to hand transcription [6, 36, 37]. 

ASR however, requires training of a large 

database of words and has been challenged by 

child speech [26].  In the case of very young 

children and children with speech impairments 

that affect intelligibility, although speech may 

be perceptually difficult to understand by 

humans, phonotatic patterns are still able to be 

detected [9-10].   

 

To characterize difference in syllable 

complexity in children with and without speech 

disorders, we utilize an automated approach that 

is designed to detect syllabic units without 

reliance on word identification. The 

SpeechMark® landmark analysis system 

segments syllables using acoustic landmarks.   

Acoustic landmarks do not depend on the 

intelligibility of phonemes to characterize 

speech but focus on detecting change in 

acoustic patterns based on articulatory 

movements in the vocal tract and articulatory 

timing [2,3] These acoustic events that occur 

based on changes of the articulatory shape of 

the oral cavity are called landmarks. Unlike 

approaches based on ASR, this method does 

not depend on identification of specific words 

or speech sounds in the signal. Instead, the 

pattern of landmarks provides a method for 
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tracking articulatory patterns held in common 

across different syllables, words or sentences. 

Thus, landmark-based tools are particularly 

well- suited for analysis of non-lexical 

(independent of phonemic identification) 

articulatory differences in the way a word or 

syllable is produced [7,8,27]. 

 

1.1 SpeechMark
® 

Landmark Analysis System  

The SpeechMark® system is based upon the 

prior work of Stevens et al. [27-29], Liu [21], 

and Howitt [12] Abrupt landmarks occur at 

points where abrupt changes in the amplitude 

of several frequency bands reach 

predetermined  thresholds  for  detection. 

Landmark detection occurs by first computing a 

spectrogram with a 6ms Hanning window every 

1ms.  The spectrogram is then divided into the 

six frequency bands, ranging 0.0 −0.4, 0.8−1.5, 

1.2−2.0, 2.0−3.5, 3.5−5.0, and 5.0−8.0 kHz 

[12,21]. The algorithm localizes moments 

where abrupt changes and peaks in energy 

occur. An “abrupt” change occurs when power 

increases/decreases at the minimum of 6 dB 

simultaneously in the finely and coarsely 

smoothed contours [13]. When the energy 

change is not sufficient to meet the threshold 

the landmark will not be detected.  

Abrupt glottal and oral landmark types used in 

this study, and their mnemonic labels: 

 g: glottis. Marks the beginning (+g) and 

end (-g) of sustained laryngeal motion near 

a segment of sustained periodicity. 

 p: periodicity: Marks the beginning (+p) 

and end (-p) of sustained periodicity of 

an appropriate period. 

 s: syllabicity: Marks sonorant consonantal 

releases (+s) and closures (-s) in a voiced 

segment 

 b: burst: Marks frication onsets or 

affricate/stop bursts (+b) and the point 

where aspiration or frication ends (-b) in an 

unvoiced segment 

 f: unvoiced frication onset (+f) and offset 

(-f) of simultaneous power 

increases/decreases or decreases/increases 

of high frequencies/low frequencies 

respectively  

 v: voiced frication onset and offset of 

simultaneous power increases/decreases 

(+v) or decreases/increases (-v) of high 

frequencies/low frequencies respectively  

Non-abrupt landmark 

V: Vowel: Marks a time point corresponding 

to local maximum harmonic power 

F: Continuing frication: marks a time of 

maximally well-developed air turbulence.  

1.2. Syllabic Cluster Analysis 

 
SpeechMark’s extension of the landmark 

system, Automatic Syllabic Cluster Analysis, 

further groups the landmarks into syllabic 

units. Syllabic Clustering occurs after 

landmarks have been detected in the signal. 

Consecutive abrupt oral and glottal landmarks 

are grouped around non-abrupt vowel 

landmarks into clusters that approximately 

match the shape of phonotactically well- 

formed linguistic syllables. Syllables with a 

simple  structure  will show fewer landmarks, 

while syllables with a complex structure will 

show more landmarks and more unusual patterns 

of landmarks[3]. 

The method detects differences in articulatory 

precision as a difference in how many of the 

landmarks characteristic of the canonical 

form are present, and in what pattern. Recall 

that the detection of abrupt landmarks is based 

on thresholding---when a syllable is produced 

with articulatory movements that are strong 

and timed appropriately, the acoustic 

signatures will meet the threshold, and the 

full set of landmarks will be detected. When 

the same syllable is spoken with fewer 

extreme articulatory movements in a shorter 

period of time, the landmark thresholds will 

not be reached, and fewer landmarks will be 

detected. Thus, different syllabic cluster 

groupings will be detected when (1) a string of 

intended syllables is produced in its canonical 

form (CCVC), (2) in a less complex form 

(CVC), or (3) a more lenited, (i.e. softened 

consonant) form (/t/ becomes /ɵ /, /s/ becomes 

/f/, etc. For example, the sequences “aah”, 

“bah”, and “bat” consist of V, CV, and CVC 

syllables. If produced canonically, they would 

be distinguished from one another as +g-g, 

+b+g+s-g, and +b+g+s-g+b-b. Note that, 

because of the non-lexical aspect of the 

SpeechMark system, many words with similar 

syllabic shape will show up with identical 

sequences of landmarks; for example, if 

produced in canonical form, the words 

“backed” and “that’s” will both appear as 

+g+s-g+b-b.  If “backed” is produced with a 

more weakly produced final stop consonant—

i.e. more like “back” with an unreleased final 

“k”—it will appear as +g+s-g. 

Figure 1: Landmarks and Syllabic 

Clusters. The segment shows the word seven, 

together with the landmarks found ( magenta,  

solid  lines  for  high  strength,  otherwise  

dotted). Dentiles over the waveform mark the 

syllabic clusters of the two syllables (dashed 

red, 5.72-5.85s and 5.91-6.20s). Other 
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dentiles mark the voiced segment (solid cyan, 

5.72-6.20s), which extends through both 

syllables, and the utterance cluster (dashed 

green, top, either 5.60-6.20s or 5.72-6.20s, 

depending on the strength threshold of 

landmarks to be included). The example also 

shows a peak-type landmark (5.70s). 

 

1.3 Toward Automated Speech Disorder Detection 

 
Both landmark patterns in general, and 

Syllabic Clusters in particular, have been shown 

to correlate with changes in articulatory 

precision in normal and disordered speakers 

[2,3, ]. Studies have shown that syllabic cluster 

patterns are significantly different in clear vs. 

conversational speech, and can distinguish 

more- vs. less-intelligible speakers [4]. Adult 

speakers with disorders show different patterns 

of landmarks and syllabic clusters relative to 

typical speakers [3,5,13]. 

As noted above, studies using transcription and 

syllabic coding have shown that children 

become more adept at producing complex 

syllables as a function of age and practice. 

Further, children with speech disorders lag 

behind their peers in this skill [14,31,35]. 

Accordingly, we expect to find that children 

with speech sound disorders, will produce 

fewer syllabic clusters, and that the clusters 

themselves will be simpler. In the case of 

child speech, complex syllables that an adult 

might produce as a syllabic cluster with 

multiple landmarks (e.g. “string”) may be 

produced as a simpler syllable with fewer 

landmarks (“sring”, “ring”), or even be broken 

into two syllables of simpler structure 

(“siring”). Depending on the degree to which 

the transcriber  is aware of small  phonetic  

differences,  “siring” might be transcribed as 

/sərɪŋ/ or /strɪŋ/. In this paper we apply the 

Automatic Syllabic Cluster Analysis to 

differentiate between children who have 

typically developing speech production and 

those with speech production disorders. 

2. METHODS 

2.1. Participants 

The speech of 37 children ages 3-5 was 

analyzed using Syllabic Cluster Analysis to 

m e a s u r e  differences b e t w e e n  groups. Of 

the children, 27 were typically developing 

and 10 were diagnosed with speech sound 

disorder. Speech was recorded in either of two 

locations—in a quiet room at a community 

preschool or a university clinic. Children were 

screened for normal hearing using the criterion 

of sound detection at 20 dB HL for pure tones 

at 500, 1000, 2000, and 4000 Hz. Speech and 

language were assessed using the Clinical 

Assessment of Articulation and Phonology 

2nd edition [34] and the Clinical Evaluation 

of Language Fundamental-preschool 2nd 

Edition [38]. Children with standard scores of 

80 or greater were considered to be typically 

developing. Children with lower scores were 

considered to fit the diagnosis of Speech 

Sound Disorder. 

 
2.2 Recordings 

 

Continuous speech samples were elicited using 

a child story book with repetitive sentences for 

each subject (Brown Bear, Brown Bear, What 

do You See [16]). Recordings were collected 

using a Shure wireless system with a 

unidirectional, cardioid lavalier microphone and 

receiver connected to laptop computers. Speech 

was recorded directly using WaveSurfer 

(www.speech.kth.se/wavesurfer/). The Shure 

body pack transmitter and microphone was 

worn by the child on a well-fitted vest. Samples 

were digitally processed at a sampling rate of 

22K and 24bit depth. A total of 1172 sentences 

from 37 child speakers were r eco r d ed  f o r  

analysis.   

 
2.3 Instrumentation 

 
Syllable complexity was measured using the 

Syllabic Cluster Analysis algorithm in the 

SpeechMark ® Matlab toolbox. The following 

parameters were analyzed: number of (1) 

landmarks (LMs), (2) syllabic clusters (SCs), 

(3) landmarks per syllabic cluster (LM/SC), 

and (4) syllabic clusters per utterance 

(SC/Utts). LM/SC and SC/Utts were used in 

logistic regression models as predictors of 

disordered group status. 

3. RESULTS 

Mixed-effects logistic regression models were 

fit to analyze how well LM/SC and SC/Utts 
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predict disordered group status. Mixed models 

are useful for analyzing multiple observations 

within subjects, providing flexibility in 

modeling expected values, as well as between-

subject differences simultaneously [11]. The 

mixed-effect and standard models yielded 

equivalent results.  

 
Table 1: Logistic regression model fits for 

landmarks per syllable (top row) and syllable 

clusters per utterance (bottom row). Slope 

estimates (first column), standard errors (second 

column), z values (third column), and p values 

(fourth column). 

 

 Estimate SE z value Pr(>|z|) 

LM/SC 0.01 0.05 0.17      0.85 

SC/Utts -0.21 0.031 -6.85 <.001 

 

The slope estimate and standard error for LM/SC 

indicates that LM/SC is a very poor predictor of 

disordered group status. On the other hand, the 

slope estimate and standard error for SC/Utts 

indicates that SC/Utts is a useful predictor of 

disordered group status. The slope estimate of -

0.21 indicates that for each unit increase in one 

SC/Utts, the probability of being in the TD 

group decreases by approximately 0.05. 

Figure 2. Landmarks per syllable cluster 

(LM/SC) and disordered group status. The x-

axis indicates group status (TD = Typically 

Developing; D = Disordered), and the y-axis 

indicates LM/SC. The boxplots indicate the 

median (thick horizontal line) and 

interquartile region (lower and upper box 

limits), with the notch indicating an 

approximate 95% confidence interval for the 

median. The whiskers indicate 1.5 times the 

interquartile range, with dots indicating data 

outside this range. 

 

Figure 3. Syllable clusters per utterance 

(SC/Utts) and disordered group status. The x-

axis indicates group status (TD 

= Typically Developing; D = Disordered), and 

the y-axis indicates SC/Utts. The boxplots 

indicate the median (thick horizontal line) and 

interquartile region (lower and upper box 

limits), with the notch indicating an 

approximate 95% confidence interval for the 

median. The whiskers indicate 1.5 times the 

interquartile range, with dots indicating data 

outside this range. 

 

4. DISCUSSION 

In this study, we applied the Automatic Syllabic 

Cluster Analysis approach as a computerized 

method for analyzing continuous speech 

samples recorded by preschool aged children.  

Syllabic complexity was measured as a means 

of detecting differences between talkers who 

were identified to have typically developing 

speech production and those with speech 

production disorders. Syllabic clusters per 

utterance was found to be a significant predictor 

of  disordered speech in running speech 

samples. One of the challenges in measuring the 

speech of older children with speech disorders is 

that errors may overlap with typical 

developmental speech errors in younger 

children.   

5. CONCLUSIONS 

Automated Syllabic Cluster detection is 

useful for detecting differences in speech 

production utilizing a landmark-based 

technology. This approach could serve 1) as a 

computer-assisted approach to measuring 

syllable complexity when analyzing speech 

spoken by preschool-age children and 

particularly those with decreased intelligibility 

due to speech disorders and, 2) a means for early 

identification of children who are developing on 

abnormal trajectories using continuous speech 

samples.  
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